超疏水性的理论基础

气体环绕的固体表面的液滴。接触角θ,是由液体在三相(液体、固体、气体)交点处的夹角。1805年,托马斯·杨通过分析作用在由气体环绕的固体表面的液滴的力而确定了接触角θ。气体环绕的固体表面的液滴,形成接触角θ。如果液体与固体表面微结构的凹凸面直接接触,则此液滴处于Wenzel状态;而如果液体只是与微结构的凸面接触,则此液滴处于Cassie-Baxter状态。其中: 固体和气体之间的表面张力 = 固体和液体之间的表面张力 = 液体和气体之间的表面张力,θ可以用接触角测量计来测量。Wenzel确定了当液体直接接触微结构化的表面时,θ角会转变为θW *cosθW * = rcosθ 其中,r为实际面积与投影面积的比率。Wenzel的方程显示了微结构化一个表面将会放大表面张力。疏水性表面(具有大于90°的接触角)在微结构化之后会变得更加疏水,其新的接触角将比原来增大。然而,一个亲水性表面(具有小于90°的接触角)在微结......阅读全文

超疏水性的理论基础

气体环绕的固体表面的液滴。接触角θ,是由液体在三相(液体、固体、气体)交点处的夹角。1805年,托马斯·杨通过分析作用在由气体环绕的固体表面的液滴的力而确定了接触角θ。气体环绕的固体表面的液滴,形成接触角θ。如果液体与固体表面微结构的凹凸面直接接触,则此液滴处于Wenzel状态;而如果液体只是与微结

超疏水性的理论原理

气体环绕的固体表面的液滴。接触角θ,是由液体在三相(液体、固体、气体)交点处的夹角。1805年,托马斯·杨通过分析作用在由气体环绕的固体表面的液滴的力而确定了接触角θ。气体环绕的固体表面的液滴,形成接触角θ。如果液体与固体表面微结构的凹凸面直接接触,则此液滴处于Wenzel状态;而如果液体只是与微结

什么是超疏水性?

超疏水性物质,如荷叶,具有极难被水沾湿的表面,其水在其表面的接触角超过150°,滑动角小于20°。

超疏水性的研究和应用

许多在自然界中找到的超疏水性物质都遵循Cassie定律,而它在次微米尺度下可以和空气组成双相物质。莲花效应便是基于此一原理而形成的。仿生学上,超疏水性物质的例子有利用纳米科技中的nanopin胶片(nanopin film)。

关于超疏水性的相关介绍

  超疏水性物质,如荷叶,具有极难被水沾湿的表面,其水在其表面的接触角超过150°,滑动角小于20°。  理论  气体环绕的固体表面的液滴。接触角θ,是由液体在三相(液体、固体、气体)交点处的夹角。  1805年,托马斯·杨通过分析作用在由气体环绕的固体表面的液滴的力而确定了接触角θ。  气体环绕的

超疏水性的研究和应用

许多在自然界中找到的超疏水性物质都遵循Cassie定律,而它在次微米尺度下可以和空气组成双相物质。莲花效应便是基于此一原理而形成的。仿生学上,超疏水性物质的例子有利用纳米科技中的nanopin胶片(nanopin film)。

细胞化学基础超疏水性理论

超疏水性物质,如荷叶,具有极难被水沾湿的表面,其水在其表面的接触角超过150°,滑动角小于20°。理论气体环绕的固体表面的液滴。接触角θ,是由液体在三相(液体、固体、气体)交点处的夹角。1805年,托马斯·杨通过分析作用在由气体环绕的固体表面的液滴的力而确定了接触角θ。气体环绕的固体表面的液滴,形成

什么是超疏水性?原理是什么?

超疏水性物质,如荷叶,具有极难被水沾湿的表面,其水在其表面的接触角超过150°,滑动角小于20°。气体环绕的固体表面的液滴。接触角θ,是由液体在三相(液体、固体、气体)交点处的夹角。1805年,托马斯·杨通过分析作用在由气体环绕的固体表面的液滴的力而确定了接触角θ。气体环绕的固体表面的液滴,形成接触

深圳先进院超疏液表面研究获进展

  现代社会的工业生产和日常生活中,液体残留、污染和流动不畅是随处可见的问题,例如衣服沾了油污难以洗净,医院里大量使用一次性容器来避免液体样品的污染,诸如此类的问题都指向了一个普遍而重大的挑战:开发特殊表面,使得各种液体包括高表面能的水溶液和较低表面能的液体(通称为油)都能极少残留及吸附,并且易于流

兰州化物所自修复超双疏表面制备研究取得进展

  近日,中国科学院兰州化学物理研究所固体润滑国家重点实验室表/界面研究组提出了制备自修复超双疏(超疏水和超疏油)表面简单有效的方法。  近年来,尽管已通过许多方法成功制备了人造超双疏表面,但它们的应用受到耐用性低的限制。大部分人造超双疏表面非常脆弱,易受机械磨损、苛刻条件破坏的影响

兰州化物所功能超疏油材料研究取得新进展

Schematic Depiction of Fabricating Superoleophobic Micro- And Nanopatterned TiO2 NT Arrays  近日,中科院兰州化学物理研究所固体润滑国家重点实验室表面与界面课题组在疏油材料研究方面取得新进展。  界面超疏水性质

研究实现水下透明且坚固的超疏油薄膜的快速制备

固体表面的特殊润湿性是自然界中普遍存在的现象,因其在油水分离、防污和减阻等领域的潜在应用而备受关注。例如,受鱼鳞、珍珠层和海藻等水下生物体的水下超疏油特性表面启发,科研人员设计和制备了许多新型的水下超疏油界面材料。然而,对于水下超疏油材料而言,开发兼具高透明度和机械稳定性能仍是目前面临的挑战,这限制

5G天线罩超疏液涂层解决“雨衰效应”

近日,中国科学院兰州化学物理研究所环境材料与生态化学研发中心硅基功能材料组与山东鑫纳超疏新材料有限公司合作,研发出了兼具优异耐压性、机械稳定性和耐候性的5G天线罩、雷达罩超疏液防雨衰涂层,能有效解决5G信号在降雨时的“雨衰效应”。相关论文发表在《自然-通讯》。5G技术是我国重大战略布局,目前中国已建

“一种超双疏表面制备技术”获国家发明ZL授权

  与有关超疏水报道相比,超疏油表面方面的报道较少。超疏油表面有着更广泛和实际的用途。12月21日获悉,中国科学院兰州化学物理研究所固体润滑国家重点实验室研究人员研发出一种超双疏表面制备技术,并获国家发明ZL授权(一种超疏水超双疏表面制备技术,ZL号:200810183392.4)。   该技术将

兰州化物所硅基超疏液涂层应用基础研究取得进展

  仿生超疏液涂层具有液滴接触角高(>150°)、滚动角低(

深圳先进院在超疏液表面润湿建模研究中获进展

  现代社会的工业生产和日常生活中,固液界面相互作用带来的液体吸附、残留、腐蚀、扩散、污染、损失等广泛存在,具有低粘附、易流动特性的仿荷叶的超疏液表面成为减少液体吸附和残留的理想选择。超疏液表面作为超疏水表面的升级和扩展,其具有的诸多优良特性,尤其是其对任何液体的自清洁特性,在减少塑料袋白色污染、医

亲水性色谱柱具有适度的疏水性和亲水性

亲水性色谱柱是硅胶基质的体积排阻色谱柱,也称为“球状蛋白亲水改性硅胶柱”,是中国药典中检测头孢类抗生素中β内酯类聚合物的指定色谱柱。其色谱填料为高纯度、具有良好稳定性的硅胶微球表面键合亲水性聚合物。本公司采用特殊的表面修饰技术,确保了该填料具有良好的稳定性和批与批之间的重现性。  亲水性色谱柱具有适

XRF仪器的理论基础

荧光,顾名思义就是在光的照射下发出的光。X射线荧光就是被分析样品在X射线照射下发出的X射线,它包含了被分析样品化学组成的信息,通过对上述X射线荧光的分析确定被测样品中各组份含量的仪器就是X射线荧光分析仪。从原子物理学的知识我们知道,对每一种化学元素的原子来说,都有其特定的能级结构,其核外电子都以各自

关于XRF的理论基础

  荧光,顾名思义就是在光的照射下发出的光。X射线荧光就是被分析样品在X射线照射下发出的X射线,它包含了被分析样品化学组成的信息,通过对上述X射线荧光的分析确定被测样品中各组份含量的仪器就是X射线荧光分析仪。  从原子物理学的知识我们知道,对每一种化学元素的原子来说,都有其特定的能级结构,其核外电子

酸碱萃取的理论基础

酸碱萃取的基础理论是应用了盐是离子化合物的一种,因此可溶于水,而大部分中性的物质则不溶于水这一点。 当把酸加入一有机酸和另一盐基中时,该酸不会产生变化,该碱会被质子化。如果那有机酸,例如是一些羧酸,足够强的话,其自电离作用会被加入的酸所抑制。

疏齿巴豆的介绍

  疏齿巴豆,学名Croton limitincola Croiz. ,大戟科,巴豆属,灌木,嫩枝、叶下面、叶柄和花序均被贴伏腊质星状毛,枝条无毛。叶薄革质,总状花序,顶生或腋生。雄花萼片卵形,雄蕊花丝具绵毛;雌花萼片披针形,蒴果近球形,被蜡质贴伏星状毛。花期9-11月。生于密林中,少见。

基于飞秒激光微加工技术获得水下透明超疏油界面

  西安交通大学陈烽教授团队基于飞秒激光微加工技术获得了水下透明超疏油界面。该项研究成果以封面文章的形式发表在材料类期刊J. Mater. Chem. A [3, 9379-9384 (2015)]上,同时该研究工作被国际科技新闻网站Chemistry World以标题“Fish and Flowe

宁波材料所开发出超亲/超疏聚偏氟乙烯微孔膜

  含氟聚合物树脂具有低表面能、良好的热稳定性、化学稳定性、耐候性等突出特点,广泛应用于高性能防腐、防污涂料、防腐内衬、包装膜以及分离膜材料等领域。特别是聚偏氟乙烯(PVDF)由于良好的加工性能已经被大量用于超、微滤平板及中空纤维膜的制造,在膜生物反应器(MBR)处理市政污水和工业污水方面发挥重要的

控制理论基础简介

任何一个闭环系统都可以等效成如下模型:其中H为主拓扑或者主设备传函,K是输出采样比例,C为补偿环节传函。依据此模型我们可以得出如下方程:求解此方程就可以得出:对于补偿环节C,我们经常放一个积分环节。对于这种情况,静态增益或者直流增益是无穷大的,从而:因此对于直流成分,输出便等效成如下方程:我们可以得

物理吸附-理论基础

气体吸附理论主要有朗缪尔单分子层吸附理论、波拉尼吸附势能理论、 BET多层吸附理论(见多分子层吸附)、二维吸附膜理论和极化理论等,以前三种理论应用最广。这些吸附理论都从不同的物理模型出发,综合考查大量的实验结果,经过一定的数学处理,对某种(或几种)类型的吸附等温线的限定部分做出解释,并给出描述吸附等

对于亲水性超微孔样品脱气,应该有什么要求

分子泵的真空脱气方法。这样,样品可以在完全的无油系统中实现脱气对于吸附测定往往起始于相对压力(P/P 0)10-7的微孔材料,特别推荐通过低真空隔膜泵加上涡轮.亲水微孔样品的脱气是极具挑战性的,因为从窄微孔去除以前吸附的水非常困难。所以,高温(350℃)和长的脱气时间(通常不低于   8 小时)是

离子交换的理论基础

① 多相化学反应理论假定离子A1与A2之间有如下的交换反应:离子交换②膜平衡理论 认为树脂表面相当于半透膜, 所交换的离子能自由通过;而连接在树脂骨架上的离子不能通过。按照F.G.唐南膜平衡原理,可得出格雷戈尔公式:离子交换

接触角的应用(一)亲水性疏水性憎水性清洁度测试

 1.露台雨伞和雨篷的制造商使用接触角计测量产品中使用的织物和纺织品在经过抑制润湿的涂层处理后的润湿性能。其目的是获得尽可能高的接触角-通常在疏水范围内,但超疏水性更好。我们的目标是生产能够抵御雨水而不是吸收雨水的露台设备。这样可以防止织物弄脏;它使产品更轻(减少对支架的压力);它还增加了一种自清洁

疏齿巴豆的形态特征

  灌木,高约1米;嫩枝、叶下面、叶柄和花序均被贴伏腊质星状毛,星状毛脱落后残留小突起;枝条无毛。叶薄革质,长圆状椭圆形,长10-20厘米,宽3-10厘米,顶端渐尖至短尖,基部渐狭至楔形,基端钝或微心形,边缘疏生细锯齿,齿间弯缺处常有腺体,上面无毛;侧脉9-11对;叶柄长0.5-4厘米,顶端有2枚无

仿生超疏液涂层可解决5G天线罩“雨衰效应”

记者从中国科学院兰州化学物理研究所获悉,该所环境材料与生态化学研究发展中心硅基功能材料组与山东鑫纳超疏新材料有限公司合作,研发出了兼具优异耐压性、机械稳定性和耐候性的5G天线罩、雷达罩超疏液防雨衰涂层,能有效解决5G信号在降雨时的“雨衰效应”。相关研究论文近日发表于《自然·通讯》。5G天线罩是5G基