神经递质的代谢过程介绍

递质的代谢包括合成、储存、释放和灭活四个环节。乙酰胆碱乙酰胆碱(Ach)的合成主要是在胆碱能神经末梢内进行。由胆碱和乙酰辅酶A在胆碱乙酰化酶的催化下合成乙酰胆碱,然后转移到囊泡储存:当神经冲动到达神经末梢时,囊泡膜与突触前膜相融合将乙酰胆碱释放入突触间隙,激动突触后膜上相应受体,引起一系列生理效应。同时,乙酰胆碱由神经末梢部位的胆碱酯酶(ChE)水解为胆碱和乙酸而灭活。部分胆碱再一次被胆碱能神经末梢摄取,又参与合成新的乙酰胆碱。 去甲肾上腺素去甲肾上腺素(NA)的合成主要在去甲肾上腺素能神经末梢内进行。由肾上腺素能神经末梢的胞浆摄取血中酪氨酸,在酪氨酸羟化酶和脱羧酶催化下转变成多巴胺,再经多巴胺β-羟化酶催化合成去甲肾上腺素,储存于囊泡中。当神经冲动到达神经末梢时,囊泡向突触前膜靠近,以胞裂外排的方式释放去甲肾上腺素到突触间隙,激动突触后膜上相应的受体产生一系列生理效应。释放后的去甲肾上腺素,大部分(75%......阅读全文

神经递质的代谢过程介绍

递质的代谢包括合成、储存、释放和灭活四个环节。乙酰胆碱乙酰胆碱(Ach)的合成主要是在胆碱能神经末梢内进行。由胆碱和乙酰辅酶A在胆碱乙酰化酶的催化下合成乙酰胆碱,然后转移到囊泡储存:当神经冲动到达神经末梢时,囊泡膜与突触前膜相融合将乙酰胆碱释放入突触间隙,激动突触后膜上相应受体,引起一系列生理效应。

中间代谢的过程介绍

中间代谢也称为细胞内代谢。在中间代谢过程中,机体借助于各种反应从营养素或消化产物中获得能量,以及机体构成所需要的“原材料”。整个中间代谢可以划分为两个过程,即分解代谢和合成代谢,其中分解代谢主要完成获取能量和“原材料”的工作,而合成代谢则主要完成利用贮能和“原材料”构成机体组成成分的任务。在分解代谢

关于中间代谢的过程介绍

  中间代谢也称为细胞内代谢。在中间代谢过程中,机体借助于各种反应从营养素或消化产物中获得能量,以及机体构成所需要的“原材料”。整个中间代谢可以划分为两个过程,即分解代谢和合成代谢,其中分解代谢主要完成获取能量和“原材料”的工作,而合成代谢则主要完成利用贮能和“原材料”构成机体组成成分的任务。  在

氨的代谢过程介绍

氨是一种剧毒物质,脑组织对氨的作用尤为敏感,需要及时处理以免在组织中堆积。正常人除门静脉血液外,血液中氨的浓度极低,一般不超过60μmol/L(0.1mg/dl)。1.体内氨的来源(1)氨基酸分解产生氨:氨基酸脱氨基作用是氨的主要来源;胺类物质的氧化分解也可产生氨。(2)肠道吸收:肠道氨主要来自①肠

关于糖代谢的基本过程介绍

  糖代谢可分为分解与合成两方面,分解包括酵解与三羧酸循环,合成包括糖的异生、糖原与结构多糖的合成等,中间代谢还有磷酸戊糖途径、糖醛酸途径等。  糖代谢受神经、激素和酶的调节。同一生物体内的不同组织,其代谢情况有很大差异。脑组织始终以同一速度分解糖,心肌和骨骼肌在正常情况下降解速度较低,但当心肌缺氧

性激素的代谢过程介绍

合成贮存性激素有共同的生物合成途径:以胆固醇为前体,通过侧链的缩短,先产生21碳的孕酮或孕烯醇酮,继而去侧链后衍变为19碳的雄激素,再通过A环芳香化而生成18碳的雌激素。性激素的代谢失活途径也大致相同,即在肝、肾等代谢器官中形成葡萄糖醛酸酯或硫酸酯等水溶性较强的结合物,然后随尿排出,或随胆汁进入肠道

关于脑神经递质的神经递质的包装介绍

  合成好的神经递质要包装到囊泡中贮存,以待释放。不同的递质包装到不同的囊泡,它们在形态上能很容易区分。小分子递质如乙酰胆碱和氨基酸,被包装到直径为40~60nm的小囊泡中,位于囊泡膜上的递质转运体主动把胞质内合成好的小分子递质泵入囊泡内贮存。小囊泡电子密度低,在电镜下中心明亮,故称为中心明亮的小囊

α酮酸代谢过程介绍

α-酮酸代谢氨基酸脱氨后生成的 α-酮酸可进一步代谢。主要有以下三方面:1.经氨基化生成非必需氨基酸实验证明人体不能合成赖、异亮、苯丙、亮、色、缬、苏、蛋等8种氨基酸相对应的α-酮酸,因而这些氨基酸不能在体内合成,必须从食物摄取,称为营养必需氨基酸。其它十二种氨基酸则称为营养非必需氨基酸,所谓非必需

体内氨的代谢过程的介绍

氨是一种剧毒物质,脑组织对氨的作用尤为敏感,需要及时处理以免在组织中堆积。正常人除门静脉血液外,血液中氨的浓度极低,一般不超过60μmol/L(0.1mg/dl)。1.体内氨的来源(1)氨基酸分解产生氨:氨基酸脱氨基作用是氨的主要来源;胺类物质的氧化分解也可产生氨。(2)肠道吸收:肠道氨主要来自①肠

两用代谢途径的过程介绍

在这代谢途径中,糖酵解系统主要是分解的(catabolism),而氨基酸和卟啉系统则是合成(anabolism):与这些相反,例如柠檬酸循环有丙酮酸的分解作用,和α酮戊二酸、草酰乙酸合成氨基酸或如乙酰CoA那种合成脂肪酸提供原料的合成作用。把这种分解作用和合成作用均具有的代谢系统附以希腊语的amph

分解代谢的类型和过程介绍

两大类型:包括两大类型,即分解代谢与合成代谢。分解代谢(Catabolism)又称“异化作用”:大分子物质可以降解成小分子物质,并在这个过程中产生能量。分解代谢的三个阶段第一阶段:将蛋白质、多糖及脂类等大分子营养物质降解成为氨基酸、单糖及脂肪酸等小分子物质;第二阶段:将第一阶段产物进一步降解成更为简

α酮酸代谢的代谢过程

氨基酸脱氨后生成的 α-酮酸可进一步代谢。主要有以下三方面:1.经氨基化生成非必需氨基酸实验证明人体不能合成赖、异亮、苯丙、亮、色、缬、苏、蛋等8种氨基酸相对应的α-酮酸,因而这些氨基酸不能在体内合成,必须从食物摄取,称为营养必需氨基酸。其它十二种氨基酸则称为营养非必需氨基酸,所谓非必需氨基酸并不是

胆红素代谢的过程

胆红素代谢(1)生成:体内的胆红素主要来自衰老红细胞中血红蛋白分解产生的血红素。(2)血中运输:主要以胆红素-白蛋白复合物的形式存在和运输。(不能被肾小球滤过)(3)肝内代谢:肝脏对胆红素有摄取、转化、排泄的功能。1)摄取:胆红素随血运输到肝后,在膜上与白蛋白解离,并被肝细胞摄取。肝细胞内有Y蛋白和

氨基酸参与代谢的的过程介绍

  主要在肝脏中进行:包括如下几种过程:  1、氧化脱氨基作用:第一步,脱氢,生成亚胺;第二步,水解。生成的H2O2有毒,在过氧化氢酶催化下,生成H2O和O2,解除对细胞的毒害。  2、非氧化脱氨基作用:①还原脱氨基(严格无氧条件下);②水解脱氨基;③脱水脱氨基;④脱巯基脱氨基;⑤氧化-还原脱氨基,

什么是代谢途径?代谢途径的过程

习惯上把这种连续的化学反应叫作代谢途径。如酵解途径,三羧酸循环途径,戊糖磷酸途径,糖原合成途径,糖异生途径,脂肪酸合成途径等。中间代谢也称为细胞内代谢。在中间代谢过程中,机体借助于各种反应从营养素或消化产物中获得能量,以及机体构成所需要的“原材料”。整个中间代谢可以划分为两个过程,即分解代谢和合成代

关于蛋白质代谢的消化过程介绍

  外源蛋白有抗原性,需降解为氨基酸才能被吸收利用。只有婴儿可直接吸收乳汁中的抗体。可分为以下两步:  1、胃中的消化:胃分泌的盐酸可使蛋白变性,容易消化,还可激活胃蛋白酶,保持其最适pH,并能杀菌。胃蛋白酶可自催化激活,分解蛋白产生蛋白胨。胃的消化作用很重要,但不是必须的,胃全切除的人仍可消化蛋白

关于景天科酸代谢的发现过程介绍

  1804年瑞士学者N.-T.de索绪尔注意到仙人掌与多数植物不同,它在黑暗中吸收CO2,而不释放CO2。1815年B.海涅发现若干肉质植物夜间体内累积苹果酸,但当时未认识到这两种现象的重要性以及二者之间的关系。一个多世纪后的1949年,M.托马斯和J.沃尔夫由于受到丙酸细菌非光合CO2固定研究的

关于半胱氨酸的代谢过程介绍

  体内半胱氨酸含有巯基(-SH),而胱氨酸含有二硫键(-S-S -),二者可以相互转化。半胱氨酸在体内分解时,有以下几条途径:  ①直接脱去巯基和氨基,生成丙酮酸、NH3和H2S。H2S再经氧化而生成H2SO4。  ②巯基氧化成亚磺基,然后脱去氨基和亚磺基,最后生成丙酮酸和亚硫酸,后者经氧化后可变

维生素d的代谢过程介绍

D2、D3在人体内的主要代谢过程见图 2。自皮肤形成的D3与 DBP结合经血入肝。口服的D2或D3至小肠,在胆盐的作用下,与脂质一同自粘膜吸收成乳糜微粒经淋巴系统入肝;注射的D2或D3吸收后也经血入肝。在肝细胞微粒体经25-羟化酶的作用形成25-OHD入血,25-OHD为血清中多种维生素D代谢产物中

关于三氯蔗糖的代谢过程介绍

  研究发现,人体每天摄入125mg的三氯蔗糖,持续3周后,再每天摄入250mg的三氯蔗糖持续4周,最后每天摄入500mg的三氯蔗糖持续5周,未发现对血液、尿液化学成分以及心电图产生不良影响。研究结果还显示人体单剂量摄入10mg/kg·d的三氯蔗糖和持续13周每日摄入5mg/kg·d的三氯蔗糖,对人

叶酸的代谢过程

进入机体的叶酸在二氢叶酸还原酶作用下转变为二氢叶酸,进而转化为四氢叶酸;在丝氨酸羟甲基转移酶的作用下,四氢叶酸活化为5,10-亚甲基四氢叶酸,该反应是可逆的;在亚甲基四氢叶酸还原酶的作用下,5,10-亚甲基四氢叶酸转化为5-甲基四氢叶酸;同型半胱氨酸、维生素B12,在蛋氨酸合成酶作用下,5-甲基四氢

中枢神经递质和受体显像的检查过程

  利用放射性核素标记的特定配基,鉴于受体-配体特异性结合性能,在活体人脑水平对特定受体结合位点进行精确定位并获得受体的分布、密度与亲和力影像;利用放射性标记的合成神经递质的前体物质尚可观察特定中枢神经递质的合成、释放、与突触后膜受体结合以及再摄取情况。

关于脑神经递质的共存介绍

  药理学家Henry Dale曾提出一个假设:一种神经元只能合成、分泌某一种神经递质。该假说被称为“Dale法则”。但后来发现某些神经元末梢可以释放一种以上的神经递质,有些含有多种肽类递质,有些含有两种以上的小分子递质,还有些是肽类递质与小分子递质共存。当多种神经递质共存于同一个神经末梢时,这些递

关于脑神经递质的分类介绍

  已发现的神经递质超过100种,它们可以分为两大类:小分子神经递质和大分子神经多肽。 [2]  小分子经典递质除了最早发现的乙酰胆碱外,还有生物活性胺类递质和氨基酸类递质。生物活性胺类递质由于分子中都带有胺基而得名,主要有儿茶酚胺类递质(多巴胺、去甲肾上腺素、肾上腺素)和5-羟色胺;组胺虽然在化学

关于脑神经递质的基本介绍

  脑神经递质是帮助信号从一个神经细胞传递到另外一个神经细胞的化学物质。 [1] 它与突触后细胞膜上的特异性受体相结合,影响突触后神经元的膜电位或引起效应细胞的生理效应,从而完成突触信息传递。通俗地说,神经递质就是使突触前的信息能顺利越过突触间隙传递到突触后细胞的化学物质。由于神经元是以生物电的形式

关于外周神经递质的介绍

  1.乙酰胆碱在蛙心灌注实验中观察到,刺激迷走神经时蛙心活动受到抑制,如将灌流液转移到另一蛙心制备中去,也可引致后一个蛙心的抑制。显然在迷走神经兴奋时,有化学物质释放出来,从而导致心脏活动的抑制。后来证明这一化学物质是乙酰胆碱,乙酰胆碱是迷走神经释放的递质。以后在许多其他器官中(例如胃肠、膀胱、颌

关于脑神经递质的合成介绍

  神经递质由神经元内特异的合成酶催化合成。对很多递质而言,这是决定它们在神经元内含量多少的关键步骤。小分子经典递质的合成是在突触前末梢内完成的。催化反应的合成酶在胞体处预先合成好,经过一种称为慢速轴质运输机制,以每日0.5~5mm的速度运输到轴突末梢;酶催化的前体分子则通常是由突触前膜上的特异性转

关于脑神经递质的释放介绍

  当神经元受到刺激产生的动作电位传递到突触前膜末梢时,活性区部位密集的Ca2+通道随即打开,Ca2+从胞外进入胞内,引发了神经递质囊泡与突触前膜融合释放神经递质的过程。大、小分子递质释放概率是不一样的。小分子递质的释放要比大分子多肽类递质更迅速。运动神经元末梢释放乙酰胆碱只需几毫秒,而下丘脑的神经

关于脑神经递质的清除介绍

  对于某一种神经递质而言,它都有各自独特的合成﹑包装﹑释放和降解过程。神经递质一旦被释放到突触间隙中,就会和突触后膜上特异性受体结合并产生相应的突触后效应。同时在突触间隙必须启动某种机制,使递质浓度快速降低,这样才能保证后续的突触传递不断进行。实际上,在突触间隙存在多种机制,它们共同作用以清除并降

神经递质受体的生活周期介绍

  在中枢神经系统(CNS)中,突触传递最重要的方式是神经化学传递。神经递质由突触前膜释放后立即与相应的突触后膜受体结合,产生突触去极化电位或超极化电位,导致突触后神经兴奋性升高或降低。神经递质的作用可通过两个途径中止:一是再回收抑制,即通过突触前载体的作用将突触间隙中多余的神经递质回收至突触前神经