光学低通滤波器的光谱特性

为了消除彩色干扰纹,除了要考虑光学低通滤 波器的频率特性以外,还应考虑它的光谱特性。由于CCD 传感器可以响应近红外光,会破坏图像的色还原,因此OLPF不仅因双折射功能而改变入射光的空间频率,而且还应该具有光谱选通特性。一种方法是在石英镜片的一个表面镀上红外截止膜;另 一种方法是在 OLPF 中间胶合一块红外截止滤光片。对三种不同的OLPF 样品进行了测试和比较。 通过测试和比较可以看出, OLPF 具有良好的红外截止功能。......阅读全文

光学低通滤波器的光谱特性

为了消除彩色干扰纹,除了要考虑光学低通滤 波器的频率特性以外,还应考虑它的光谱特性。由于CCD 传感器可以响应近红外光,会破坏图像的色还原,因此OLPF不仅因双折射功能而改变入射光的空间频率,而且还应该具有光谱选通特性。一种方法是在石英镜片的一个表面镀上红外截止膜;另 一种方法是在 OLPF 中间胶

光学低通滤波器的光谱特性

为了消除彩色干扰纹,除了要考虑光学低通滤 波器的频率特性以外,还应考虑它的光谱特性。由于CCD 传感器可以响应近红外光,会破坏图像的色还原,因此OLPF不仅因双折射功能而改变入射光的空间频率,而且还应该具有光谱选通特性。一种方法是在石英镜片的一个表面镀上红外截止膜;另 一种方法是在 OLPF 中间胶

光学低通滤波器的光谱特性

为了消除彩色干扰纹,除了要考虑光学低通滤 波器的频率特性以外,还应考虑它的光谱特性。由于CCD 传感器可以响应近红外光,会破坏图像的色还原,因此OLPF不仅因双折射功能而改变入射光的空间频率,而且还应该具有光谱选通特性。一种方法是在石英镜片的一个表面镀上红外截止膜;另 一种方法是在 OLPF 中间胶

光学低通滤波器的基本介绍

光学低通滤波器大都是由两块或多块石英晶体薄板构成的,放在CCD传感器的前面。目标图象信息的光束经过OLPF后产生双折射(分为寻常光o光束和异常光e光束)。根据CCD像素尺寸的大小和总感光面积计算出抽样截止频率,同时也可计算出o光和e光分开的距离。改变入射光束将会形成差频的目标频率,达到减弱或消除低频

光学低通滤波器的功能特点

光电图像传感技术在各领域得到了大量的应用,其中光学低通滤波器技术倍受瞩目。由于 CCD 的像素是离散的根据奈奎斯特抽样定理 CCD 所能分辨的最高空间频率是它的空间采样频率的 1/ 2 即奈奎斯特极限频率。若图像的空间频率高于奈奎斯特极限频率在传感器上高频部分将被反射到基本频带造成图像周期频谱交叠即

光学低通滤波器的功能特点

光电图像传感技术在各领域得到了大量的应用,其中光学低通滤波器技术倍受瞩目。由于 CCD 的像素是离散的根据奈奎斯特抽样定理 CCD 所能分辨的最高空间频率是它的空间采样频率的 1/ 2 即奈奎斯特极限频率。若图像的空间频率高于奈奎斯特极限频率在传感器上高频部分将被反射到基本频带造成图像周期频谱交叠即

光学低通滤波器的结构特点

1、一维滤波器OLPF的基本原理是利用双折射晶体。当成像光束经过晶体后,带有同一目标图像的信息被分成O光与e光。单片双折射晶体构成了一个简单的一维滤波器,光点分开的距离决定滤波器的截至频率。选择合适的双折射晶体厚度可以制作具有不同截至频率的一维空间带通滤波器。2、两片双折射晶体构成的二维滤波器实际的

光学低通滤波器的功能介绍

光电图像传感技术在各领域得到了大量的应用,其中光学低通滤波器技术倍受瞩目。由于 CCD 的像素是离散的根据奈奎斯特抽样定理 CCD 所能分辨的最高空间频率是它的空间采样频率的 1/ 2 即奈奎斯特极限频率。若图像的空间频率高于奈奎斯特极限频率在传感器上高频部分将被反射到基本频带造成图像周期频谱交叠即

光学低通滤波器的工作原理

光学低通滤波器利用的是石英晶体的双折射作用,把栅格状目标的一束透射光分成两束———寻常光和异常光,迭加后可微量改变透射光强的空间分布。在光强分布的计算中,通过消除有害干扰拍频的频率来确定该石英晶体的厚度。把透过光学低通滤波器的栅格状景物分布看作为空间光栅调制器, 这样就可初步解释OLPF在消图像干扰

光学低通滤波器的工作原理

光学低通滤波器利用的是石英晶体的双折射作用,把栅格状目标的一束透射光分成两束———寻常光和异常光,迭加后可微量改变透射光强的空间分布。在光强分布的计算中,通过消除有害干扰拍频的频率来确定该石英晶体的厚度。把透过光学低通滤波器的栅格状景物分布看作为空间光栅调制器, 这样就可初步解释OLPF在消图像干扰

光学低通滤波器的基本信息

光学低通滤波器大都是由两块或多块石英晶体薄板构成的,放在CCD传感器的前面。目标图象信息的光束经过OLPF后产生双折射(分为寻常光o光束和异常光e光束)。根据CCD像素尺寸的大小和总感光面积计算出抽样截止频率,同时也可计算出o光和e光分开的距离。改变入射光束将会形成差频的目标频率,达到减弱或消除低频

光学低通滤波器的结构设计

1、一维滤波器OLPF的基本原理是利用双折射晶体。当成像光束经过晶体后,带有同一目标图像的信息被分成O光与e光。单片双折射晶体构成了一个简单的一维滤波器,光点分开的距离决定滤波器的截至频率。选择合适的双折射晶体厚度可以制作具有不同截至频率的一维空间带通滤波器。2、两片双折射晶体构成的二维滤波器实际的

光学晶体的特性

主要用于制作紫外和红外区域窗口、透镜和棱镜。按晶体结构分为单晶和多晶。由于单晶材料具有高的晶体完整性和光透过率,以及低的插入损耗,因此常用的光学晶体以单晶为主。

光学遥感器的特性

光学遥感器所获取的信息中最重要的特性有三个,即光谱特性,辐射度量特性和几何特性,这些特性确定了光学遥感器的性能。(1)光谱特性主要包括遥感器能够观测的电磁波的波长范围,各通道的中心波长等。在照相胶片型的遥感器中,其光谱特性主要由所用的胶片的感光特性和能用滤光片的透射特性率决定;而在扫描型的遥感器中,

光学遥感器的特性

 光学遥感器所获取的信息中最重要的特性有三个,即光谱特性,辐射度量特性和几何特性,这些特性确定了光学遥感器的性能。(1)光谱特性主要包括遥感器能够观测的电磁波的波长范围,各通道的中心波长等。在照相胶片型的遥感器中,其光谱特性主要由所用的胶片的感光特性和能用滤光片的透射特性率决定;而在扫描型的遥感器中

氮化镓的的光学特性

人们关注的GaN的特性,旨在它在蓝光和紫光发射器件上的应用。Maruska和Tietjen首先精确地测量了GaN直接隙能量为3.39eV。几个小组研究了GaN带隙与温度的依赖关系,Pankove等人估算了一个带隙温度系数的经验公式:dE/dT=-6.0×10-4eV/k。 Monemar测定了基本的

光学多晶材料的主要特性

光学多晶材料主要是热压光学多晶,即采用热压烧结工艺获得的多晶材料。主要有氧化物热压多晶、氟化物热压多晶、半导体热压多晶。热压光学多晶除具有优良的透光性外,还具有高强度、耐高温、耐腐蚀和耐冲击等优良力学、物理性能,可作各种特殊需要的光学元件和窗口材料。

常用的光学单晶特性介绍

常用的光学单晶有:①卤化物单晶。分为氟化物单晶,溴、氯、碘的化合物单晶,铊的卤化物单晶。氟化物单晶在紫外、可见和红外波段光谱区均有较高的透过率、低折射率及低光反射系数;缺点是膨胀系数大、热导率小、抗冲击性能差。溴、氯、碘的化合物单晶能透过很宽的红外波段,其熔点低,易于制成大尺寸单晶;缺点是易潮解、硬

光学黑色涂料的功能特性

中文名称光学黑色涂料英文名称optical blacking定  义直接涂在磨光的光学零件表面上的光吸收涂料,其折射率应与涂层下的玻璃材料的折射率相同。应用学科机械工程(一级学科),光学仪器(二级学科),光学仪器一般名词(三级学科)

光学玻璃的概念和特性

包括无色光学玻璃(通常简称光学玻璃)、有色光学玻璃、耐辐射光学玻璃、防辐射玻璃和光学石英玻璃等。光学玻璃具有高度的透明性、化学及物理学(结构和性能)上的高度均匀性,具有特定和精确的光学常数。它可分为硅酸盐、硼酸盐、磷酸盐、氟化物和硫系化合物系列。品种繁多,主要按他们在折射率(nD)-阿贝值(VD)图

光学石英的特性和应用特点

是一种纯净、透明、无光双晶(巴西双晶)、节瘤、包裹体、绵、裂纹(隙)、蓝针等缺陷的石英晶体。无缺陷部分的最小尺寸,机械轴×电轴×光轴为30毫米×25毫米×20毫米或45毫米×45毫米×15毫米。它与压电石英的主要区别是在晶体中允许有电双晶(道芬双晶)。由于它具有良好的透光性、旋光性等光学性能,工业上

光谱反射比的特性

室内建筑物表面的光谱反射率比和透射比,表示在全光谱波段内材料对于不同波长光的发射比,由于其中包含了光谱的信息,使得它比普通的不考虑光谱信息的单一测量材料表面反射比或透射比的方法更能准确描述材料对于光和颜色的反射特性。

脱镁叶绿素的光谱特性

脱镁叶绿素蓝光和红光吸收峰分别位于412和670nm波段,412nm波段脱镁叶绿素的比吸收系数远大于叶绿素a;440nm波段,叶绿素a的比吸收系数略大于脱镁叶绿素;670、675nm波段,叶绿素a的比吸收系数约为脱镁叶绿素的3倍。随脱镁叶绿素占色素总浓度比例的增大,浮游植物吸收曲线上蓝光吸收峰偏离4

EGU亮点文章:新型光谱仪可获取气溶胶光学吸湿增长特性

  近日,中国科学院合肥物质科学研究院安徽光学精密机械研究所研究员张为俊课题组在气溶胶光学吸湿增长特性探测技术方面取得新进展,相关研究成果以《吸湿性腔增强反照率光谱仪用于气溶胶消光、散射、吸收和单次散射反照率的吸湿增长特性的同步测量》为题发表于欧洲地球科学协会(EGU)出版的Atmospheric

组织的光学特性及其成像基础(二)

8.组织的吸收特性 组织的吸收是各个分子成分共同作用的结果。当光子的能量与分子的能级间隔匹配时,分子吸收光子。在短波长区(光子能量大),这些跃迁是电子跃迁。紫外区的重要吸收体包括DNA,芳香族氨基酸(色氨酸、酪氨酸),蛋白质,黑色素和卟啉(包括血红蛋白、肌红蛋白维生素B12以及细胞色素c)。 光穿透

常见的光学玻璃种类及特性

无色光学玻璃对光学常数有特定要求,具有可见区高透过、无选择吸收着色等特点。按阿贝数大小分为冕类和火石类玻璃,各类又按折射率高低分为若干种,并按折射率大小依次排列。多用作望远镜、显微镜、照相机等的透镜、棱镜、反射镜等。防辐照光学玻璃对高能辐照有较大的吸收能力,有高铅玻璃和CaO-B2O2系统玻璃,前者

组织的光学特性及其成像基础(一)

生物组织的光学特性,影响着光在组织中的传输,也是医学光谱和成像诊断的基础。影响光在生物组织中传播的三个物理过程是反射和折射(reflection and refraction)、 散射(scattering)、吸收(absorption)。这三个过程分别用以下参数来描述:折射率、 散射系数、吸收系数

实验室光学仪器原子吸收光谱仪石墨炉的温度特性

(一)石墨炉温度的时间特性马斯曼型商品石墨炉与里沃夫炉不同之处是,由室温分步上升到原子化所需的温度并达到平衡。在达到平衡之前的加热过程中,石墨炉原子化器的温度随时间而变化,用升温速率dT/dt来描述。由于石墨炉电源中最大功率升温,光控和快速响应电路技术的发展,达到平衡的时间,从20世纪70年代由2~

安光所光谱技术研究大气气溶胶光学特性取得新进展

  安光所张为俊研究员课题组在大气气溶胶光学特性研究方面取得新进展,相关研究工作以“Optical properties of atmospheric fine particles near Beijing during the HOPE-J3A campaign”为题目发表于欧洲地球科学协会(EG

光纤光谱仪的综合特性

  光纤光谱仪是光学仪器的主要构成部分。由于其检测精度高、速度快等优点,已成为光谱测量学中使用的重要测量仪器被广泛应用于农业、生物、化学、地质、食品安全、色度计算、环境检测、医药卫生、LED检测、半导体工业、石油化工等领域。  光纤光谱仪通常采用光纤作为信号耦合器件,将被测光耦合到光谱仪中进行光谱分