氮化镓的的光学特性
人们关注的GaN的特性,旨在它在蓝光和紫光发射器件上的应用。Maruska和Tietjen首先精确地测量了GaN直接隙能量为3.39eV。几个小组研究了GaN带隙与温度的依赖关系,Pankove等人估算了一个带隙温度系数的经验公式:dE/dT=-6.0×10-4eV/k。 Monemar测定了基本的带隙为3.503eV±0.0005eV,在1.6kT为Eg=3.503+(5.08×10-4T2)/(T-996)eV。另外,还有不少人研究GaN的光学特性。......阅读全文
氮化镓的的光学特性
人们关注的GaN的特性,旨在它在蓝光和紫光发射器件上的应用。Maruska和Tietjen首先精确地测量了GaN直接隙能量为3.39eV。几个小组研究了GaN带隙与温度的依赖关系,Pankove等人估算了一个带隙温度系数的经验公式:dE/dT=-6.0×10-4eV/k。 Monemar测定了基本的
氮化镓的的化学特性
在室温下,GaN不溶于水、酸和碱,而在热的碱溶液中以非常缓慢的速度溶解。NaOH、H2SO4和H3PO4能较快地腐蚀质量差的GaN,可用于这些质量不高的GaN晶体的缺陷检测。GaN在HCL或H2气下,在高温下呈现不稳定特性,而在N2气下最为稳定。
氮化镓的的化学特性
在室温下,GaN不溶于水、酸和碱,而在热的碱溶液中以非常缓慢的速度溶解。NaOH、H2SO4和H3PO4能较快地腐蚀质量差的GaN,可用于这些质量不高的GaN晶体的缺陷检测。GaN在HCL或H2气下,在高温下呈现不稳定特性,而在N2气下最为稳定。
氮化镓的的电学特性
GaN的电学特性是影响器件的主要因素。未有意掺杂的GaN在各种情况下都呈n型,最好的样品的电子浓度约为4×1016/cm3。一般情况下所制备的P型样品,都是高补偿的。很多研究小组都从事过这方面的研究工作,其中中村报道了GaN最高迁移率数据在室温和液氮温度下分别为μn=600cm2/v·s和μn= 1
氮化镓的的结构特性
结构特性GaN纤锌矿结构图GaN的晶体结构主要有两种,分别是纤锌矿结构与闪锌矿结构。
氮化镓的的计算化学数据
1、疏水参数计算参考值(XlogP):无2、氢键供体数量:03、氢键受体数量:14、可旋转化学键数量:05、互变异构体数量:无6、拓扑分子极性表面积:23.87、重原子数量:28、表面电荷:09、复杂度:1010、同位素原子数量:011、确定原子立构中心数量:012、不确定原子立构中心数量:013、
氮化镓的的合成方法
1、即使在1000℃氮与镓也不直接反应。在氨气流中于1050~1100℃下加热金属镓30min可制得疏松的灰色粉末状氮化镓GaN。加入碳酸铵可提供气体以搅动液态金属,并促使与氮化剂的接触。2、在干燥的氨气流中焙烧磨细的GaP或GaAs也可制得GaN。
氮化镓的的结构和应用特点
氮化镓是一种无机物,化学式GaN,是氮和镓的化合物,是一种直接能隙(direct bandgap)的半导体,自1990年起常用在发光二极管中。此化合物结构类似纤锌矿,硬度很高。氮化镓的能隙很宽,为3.4电子伏特,可以用在高功率、高速的光电元件中,例如氮化镓可以用在紫光的激光二极管,可以在不使用非线性
氮化镓半导体材料的应用前景
对于GaN材料,长期以来由于衬底单晶没有解决,异质外延缺陷密度相当高,但是器件水平已可实用化。1994年日亚化学所制成1200mcd的 LED,1995年又制成Zcd蓝光(450nmLED),绿光12cd(520nmLED);日本1998年制定一个采用宽禁带氮化物材料开发LED的 7年规划,其目标是
氮化镓功率芯片的应用领域
1)手机充电器。主要有2 个原因,①手机电池容量越来越大,从以前的可能2 000 mA·H 左右,到现在已经到5 000 mA·H。GaN 可以减少充电时间,占位体积变小。②手机及相关电子设备使用越来越多,有USB-A 口、USB-C 口,多头充电器市场很大,这也是GaN 擅长的领域。2)电源适配器
氮化镓的的性质与稳定性
如果遵照规格使用和储存则不会分解。避免接触氧化物,热,水分/潮湿。GaN在1050℃开始分解:2GaN(s)=2Ga(g)+N2(g)。X射线衍射已经指出GaN晶体属纤维锌矿晶格类型的六方晶系。在氮气或氦气中当温度为1000℃时GaN会慢慢挥发,证明GaN在较高的温度下是稳定的,在1130℃时它的蒸
氮化镓衬底晶片实现“中国造”
苏州纳维生产的4 英寸GaN 单晶衬底 一枚看似不起眼、“又轻又薄”的晶片,却能做出高功率密度、高效率、宽频谱、长寿命的器件,是理论上电光、光电转换效率最高的材料体系。这个“小身体大能量”的晶片叫作氮化镓(GaN)衬底晶片,是苏州纳维科技有限公司(以下简称苏州纳维)的主打产品。 “不会游泳的
氮化镓半导体材料的优点与缺陷
①禁带宽度大(3.4eV),热导率高(1.3W/cm-K),则工作温度高,击穿电压高,抗辐射能力强;②导带底在Γ点,而且与导带的其他能谷之间能量差大,则不易产生谷间散射,从而能得到很高的强场漂移速度(电子漂移速度不易饱和);③GaN易与AlN、InN等构成混晶,能制成各种异质结构,已经得到了低温下迁
氮化镓功率芯片的发展趋势分析
GaN 功率芯片主要以2 个流派在发展,一个是eMode 常开型,纳微代表的是另一个分支——eMode 常关型。相比传统的常关型的GaN 功率器件,纳微又进一步做了集成,包括驱动、保护和控制的集成。GaN 功率芯片集成的优势如下。1)传统的Si 器件参数不够优异,开关速率、开关频率都受到极大限制,通
砷化镓的结构特性
砷化镓(gallium arsenide)是一种无机化合物,化学式为GaAs,为黑灰色固体,熔点1238℃。它在600℃以下能在空气中稳定存在,并且不被非氧化性的酸侵蚀。
氮化铟的基本特性
利用金属有机化学气相淀积生长的氮化铟薄膜的光致发光特性,由于氮化铟本身具有很高的背景载流子浓度,费米能级在导带之上,通过能带关系图以及相关公式拟合光致发光图谱可以得到生长的氮化铟的带隙为0.67cV,并且可以计算出相应的载流子浓度为 n = 5.4×10cm,从而找到了一种联系光致发光谱与载流子浓度
砷化镓材料的材料特性
GaAs拥有一些较Si还要好的电子特性,使得GaAs可以用在高于250 GHz的场合。如果等效的GaAs和Si元件同时都操作在高频时,GaAs会产生较少的噪音。也因为GaAs有较高的崩溃压,所以GaAs比同样的Si元件更适合操作在高功率的场合。因为这些特性,GaAs电路可以运用在移动电话、卫星通讯、
氮化铝的特性和应用
特性(1)热导率高(约320W/m·K),接近BeO和SiC,是Al2O3的5倍以上;(2)热膨胀系数(4.5×10-6℃)与Si(3.5~4×10-6℃)和GaAs(6×10-6℃)匹配;(3)各种电性能(介电常数、介质损耗、体电阻率、介电强度)优良;(4)机械性能好,抗折强度高于Al2O3和Be
氮化镓是实现-5G-的关键技术
日前,与 SEMICON CHINA 2020 同期的功率及化合物半导体国际论坛 2020 在上海隆重举行,Qorvo FAE 经理荀颖也在论坛上发表了题为《实现 5G 的关键技术—— GaN》的演讲。
氮化镓半导体材料的反应方程式
GaN材料的生长是在高温下,通过TMGa分解出的Ga与NH3的化学反应实现的,其可逆的反应方程式为:Ga+NH3=GaN+3/2H2生长GaN需要一定的生长温度,且需要一定的NH3分压。人们通常采用的方法有常规MOCVD(包括APMOCVD、LPMOCVD)、等离子体增强MOCVD(PE—MOCVD
液相法氮化镓晶体生长研究
GaN是一种宽带隙半导体材料,具有高击穿电压、高的饱和电子漂移速度、优异的结构稳定性和机械性能,在高频、高功率和高温等应用领域具有独特的优势。在光电子和功率器件中具有广阔的应用前景。在液相生长技术中,助溶剂法和氨热法是生长高质量GaN的有效方法,该论文全面总结了这两种方法生长GaN的研究进展,详细分
氮化钛的理化特性和用途
理化性质晶体结构:立方体分子式:TiNCasNo:25583-20-4分子量:61.874密度:5.22g/cm3熔点:2930℃(5310°F;3200K)气味:无臭溶解性:微溶于热的王水,浓硫酸和氟化氢,不溶于水维氏硬度:2400弹性模量:251GPa热导率:19.2W/(m·°C)热膨胀系数:
氮化镓半导体材料新型电子器件应用
GaN材料系列具有低的热产生率和高的击穿电场,是研制高温大功率电子器件和高频微波器件的重要材料。目前,随着 MBE技术在GaN材料应用中的进展和关键薄膜生长技术的突破,成功地生长出了GaN多种异质结构。用GaN材料制备出了金属场效应晶体管(MESFET)、异质结场效应晶体管(HFET)、调制掺杂场效
氮化镓半导体材料光电器件应用介绍
GaN材料系列是一种理想的短波长发光器件材料,GaN及其合金的带隙覆盖了从红色到紫外的光谱范围。自从1991年日本研制出同质结GaN蓝色 LED之后,InGaN/AlGaN双异质结超亮度蓝色LED、InGaN单量子阱GaNLED相继问世。目前,Zcd和6cd单量子阱GaN蓝色和绿色 LED已进入大批
光学晶体的特性
主要用于制作紫外和红外区域窗口、透镜和棱镜。按晶体结构分为单晶和多晶。由于单晶材料具有高的晶体完整性和光透过率,以及低的插入损耗,因此常用的光学晶体以单晶为主。
氮化镓植于石墨烯可制成随意折叠变形的LED材料
目前,许多由有机材料制造的电子和光电子材料都具备良好的柔韧度,易于改变形状。与此同时,不易形变的无机化合物在制造光学、电气和机械元件方面展现出了强大的性能。但由于技术原因,二者却很难优势互补,功能优异的无机化合物半导体也因不易塑形的特点而遇到了发展障碍。 幸好,氮化镓与石墨烯的结合,部分实现了
光学遥感器的特性
光学遥感器所获取的信息中最重要的特性有三个,即光谱特性,辐射度量特性和几何特性,这些特性确定了光学遥感器的性能。(1)光谱特性主要包括遥感器能够观测的电磁波的波长范围,各通道的中心波长等。在照相胶片型的遥感器中,其光谱特性主要由所用的胶片的感光特性和能用滤光片的透射特性率决定;而在扫描型的遥感器中,
光学遥感器的特性
光学遥感器所获取的信息中最重要的特性有三个,即光谱特性,辐射度量特性和几何特性,这些特性确定了光学遥感器的性能。(1)光谱特性主要包括遥感器能够观测的电磁波的波长范围,各通道的中心波长等。在照相胶片型的遥感器中,其光谱特性主要由所用的胶片的感光特性和能用滤光片的透射特性率决定;而在扫描型的遥感器中
高性能氮化镓晶体管研制成功
据美国物理学家组织网9月22日(北京时间)报道,法国和瑞士科学家首次使用氮化镓在(100)-硅(晶体取向为100)基座上,成功制造出了性能优异的高电子迁徙率晶体管(HEMTs)。此前,氮化镓只能用于(111)-硅上,而目前广泛使用的由硅制成的互补性金属氧化半导体(CMOS)芯片一般