二氧化碳激光器的应用
一氧化碳激光器采用一氧化碳气体作为工作介质,产生激光输出。类似于二氧化碳激光器,激励方式有多种,波长在4-5um之间。现在主要是科研和医疗方面在应用。......阅读全文
二氧化碳激光器的应用
一氧化碳激光器采用一氧化碳气体作为工作介质,产生激光输出。类似于二氧化碳激光器,激励方式有多种,波长在4-5um之间。现在主要是科研和医疗方面在应用。
二氧化碳激光器的应用特点
民用因为二氧化碳激光器能达到的功率非常高,经常用来做工业的切割机,而低功率的激光器常常用来雕刻。此外,由于水在二氧化碳激光器的发光频率极容易挥发,因此也常常被用来做激光嫩肤 ,磨皮等激光手术。军用由于大气层对红外线的阻挡能力很弱,因此常被用来做激光武器。
二氧化碳激光器的主要原理和应用特点
二氧化碳激光器是以CO2气体作为工作物质的气体激光器。放电管通常是由玻璃或石英材料制成,里面充以CO2气体和其他辅助气体(主要是氦气和氮气,一般还有少量的氢或氙气);电极一般是镍制空心圆筒;谐振腔的一端是镀金的全反射镜,另一端是用锗或砷化镓磨制的部分反射镜。当在电极上加高电压(一般是直流的或低频交流
-紫外激光器的应用介绍
紫外激光器(UV laser),主要应用于先进研究、开发和工业制造装备,同时广泛用于生物技术和医疗设备、需要紫外光线辐射的消毒设备。基于Nd:YAG/Nd:YVO4晶体开发的DPSS紫外激光器是微加工系统的绝佳选择,并且广泛用于印刷电路板和消费电子产品。紫外激光器非常适合于科研、工业、OEM系统集成
AvaLIBS的激光器应用邻域
应用领域 ● 材料的远程无损分析,定性和识别。● 危险材料 (高温、放射性、化学毒性材料) 的远程探测和元素分析● 存储容器的放射性污染的现场检测 (玻璃化的高等级废料、中间级废料)● 不易接近环境中钢材的现场成分分析 (核反应堆压力容器等)● 废料回收过程中快速鉴别金属和合金● 关键部件在制造和装
X射线激光器的应用
生物活细胞的激光成像是X射线激光的重要应用领域.它不需要像应用电子显微镜那样的样品制备过程,也不受样品活动的影响,并且在样品受到损伤之前就可完成成像过程。因此,采用波长在水窗附近(~ 4.4nm)的X射线激光作光源的X射线显微镜就可获得活细胞组织的图像,采用X射线激光全息术还可得到三维全息图,这对生
光纤激光器的应用介绍
1.标刻应用脉冲光纤激光器以其优良的光束质量,可靠性,最长的免维护时间,最高的整体电光转换效率,脉冲重复频率,最小的体积,无须水冷的最简单、最灵活的使用方式,最低的运行费用使其成为在高速、高精度激光标刻方面的唯一选择。 一套光纤激光打标系统可以由一个或两个功率为25W的光纤激光器,一个或两个用来导光
染料激光器的应用特点
染料激光器用途非常多。除了公认的波长敏捷能力之外,这些激光还可以提供非常大的的脉冲能量或非常高的平均功率。
调Q激光器的应用
目前调Q激光器已拥有众多波长,包括266、355、523.5、526.5、532、656.5、660、1047、1053、1064、1313、1319nm,由于调Q激光器能获得高峰值功率,窄脉宽而被广泛应用于工业加工,科研领域。
紫外激光器的主要应用
紫外激光器(UV laser),主要应用于先进研究、开发和工业制造装备,同时广泛用于生物技术和医疗设备、需要紫外光线辐射的消毒设备。基于Nd:YAG/Nd:YVO4晶体开发的DPSS紫外激光器是微加工系统的绝佳选择,并且广泛用于印刷电路板和消费电子产品。紫外激光器非常适合于科研、工业、OEM系统集成
二氧化碳激光器的工作原理
二氧化碳激光是一种分子激光。主要的物质是二氧化碳分子。它可以表现多种能量状态这要视其震动和旋转的形态而定。基本的能量网状见图1。二氧化碳里的混合气体是由于电子释放而造成的低压气体(通常30-50托)形成的等离子。如麦克斯韦-波尔兹曼分布定律所说,在等离子里,分子呈现多种激发态。。一些会呈现高能态(0
二氧化碳激光器的功能介绍
二氧化碳激光器,可称“隐身人”,它发出的激光波长为10.6 微米,“身”处红外区,肉眼不能觉察,它的工作方式有连续、脉冲两种,用于激光切割,焊接,钻孔和表面处理。
二氧化碳激光器的功能介绍
二氧化碳激光器,可称“隐身人”,它发出的激光波长为10.6 微米,“身”处红外区,肉眼不能觉察,它的工作方式有连续、脉冲两种,用于激光切割,焊接,钻孔和表面处理。连续方式产生的激光功率可达20 千瓦以上。脉冲方式产生波长10.6 微米的激光也是最强大的一种激光。人们已用它来“打”出原子核中的中子。二
二氧化碳激光器的原理介绍
二氧化碳激光是一种分子激光。主要的物质是二氧化碳分子。它可以表现多种能量状态这要视其震动和旋转的形态而定。基本的能量网状见图1。二氧化碳里的混合气体是由于电子释放而造成的低压气体(通常30-50托)形成的等离子。如麦克斯韦-波尔兹曼分布定律所说,在等离子里,分子呈现多种激发态。。一些会呈现高能态(0
二氧化碳激光器的技术特点
第一它有比较大的功率和比较高的能量转换效率。一般的闭管CO2激光器可有几十瓦的连续输出功率,这远远超过了其他的气体激光器,横向流动式的电激励CO2激光器则可有几十万瓦的连续输出。此外横向大气压CO2激光器,从脉冲输出的能量和功率上也都达到了较高水平,可与固体激光器媲美。CO2激光器的能量转换效率可达
二氧化碳激光器的技术优势
第一它有比较大的功率和比较高的能量转换效率。一般的闭管CO2激光器可有几十瓦的连续输出功率,这远远超过了其他的气体激光器,横向流动式的电激励CO2激光器则可有几十万瓦的连续输出。此外横向大气压CO2激光器,从脉冲输出的能量和功率上也都达到了较高水平,可与固体激光器媲美。CO2激光器的能量转换效率可达
半导体激光器的应用
半导体激光器是成熟较早、进展较快的一类激光器,由于它的波长范围宽,制作简单、成本低、易于大量生产,并且由于体积小、重量轻、寿命长,因此,品种发展快,应用范围广,目前已超过300种,半导体激光器的最主要应用领域是Gb局域网,850nm波长的半导体激光器适用于)1Gh/。局域网,1300nm -1550
红宝石激光器的应用介绍
梅曼的发明为人类做出了重大的贡献,激光器已经成为在医学、工业以及众多科研领域不可或缺的基本仪器设备。例如在玉石加工的应用、全息照片的应用等。
锁模激光器的应用介绍
激光快速成型激光光谱学非线性光学凝聚态物理学精密打孔材料处理加工光学晶体的微加工
染料激光器的特点和应用
在染料激光器中,受激励光源的激发而产生可调谐激光的一种染料。染料激光器应用不同的激光染料产生不同波长的激光,用于光谱学和大气污染监测、同位素分离、特定光化学反应、彩色色全息照相以及疾病诊断治疗等方面。
波导激光器的功能应用介绍
固体、液体、气体、半导体等工作物质都可以做成波导激光器,其中较为成熟的是CO₂波导激光器。CO₂激光器的波导管是内径很细(约1nm)、内表面很光滑的空心导管,可以是圆形或方形,通常用氧化铍(BeO)陶瓷做成。波导管只允许低阶模通过,对高阶模的损耗很大,故输出激光的光束质量很好。CO₂波导激光器的工作
自由电子激光器的应用
自由电子激光器在短波长、大功率、高效率和波长可调节这四大主攻方向上,为激光学科的研究开辟了一条新途径,它可望用于对凝聚态物理学、材料特征、激光武器、激光反导弹、雷达、激光聚变、等离子体诊断、表面特性、非线性以及瞬态现象的研究,在通讯、激光推进器、光谱学、激光分子化学、光化学、同位素分离、遥感等领域,
液体激光器的分类及应用
液体激光器的工作物质分为两类:一类为有机化合物液体(染料),另一类为无机化合物液体。其中染料激光器是液体激光器的典型代表。常用的有机染料有四类:吐吨类染料、香豆素类激光染料、花菁类染料。染料激光器多采用光泵浦,主要有激光泵浦和闪光灯泵浦两种形式。液体激光器的波长覆盖范围为紫外到红外波段(321nm~
液体激光器的分类及应用
液体激光器的工作物质分为两类:一类为有机化合物液体(染料),另一类为无机化合物液体。其中染料激光器是液体激光器的典型代表。常用的有机染料有四类:吐吨类染料、香豆素类激光染料、花菁类染料。 染料激光器多采用光泵浦,主要有激光泵浦和闪光灯泵浦两种形式。 液体激光器的波长覆盖范围为紫外到红外波段(32
氦氖激光器的应用介绍
氦氖激光器已经被人们应用得非常普遍。但氦氖激光器又存在一定的缺点,激光器的效率较低,功率也不够大。所以在激光外科手术、钻孔、切割、焊接等这些行业中,人们现在大多换成采用 CO2激光器、脉冲激光器或者是半导体激光器等大功率激光器。因为氦氖激光器具有工作性质稳定、使用寿命比较长的特点,因而现在对于氦氖激
锁模激光器的应用范围
激光快速成型激光光谱学非线性光学凝聚态物理学精密打孔材料处理加工光学晶体的微加工
氮分子激光器的应用介绍
氮分子激光器是一种重要的近紫外相干光源。它的输出峰值功率高(Peak power__45 kW ),脉冲持续时间短(
固体激光器的应用简介
固体激光器在军事、加工、医疗和科学研究领域有广泛的用途。它常用于测距、跟踪、制导、打孔、切割和焊接、半导体材料退火、电子器件微加工、大气检测、光谱研究、外科和眼科手术、等离子体诊断、脉冲全息照相以及激光核聚变等方面。固体激光器还用作可调谐染料激光器的激励源。 固体激光器的发展趋势是材料和器件的
自由电子激光器的应用
由于自由电子激光器具有许多一般激光器望尘莫及的优点, 所以自由电子激光器问世后不久,科学家们就开始着手于研究它的应用问题.自由电子激光特别适宜于研究光与原子、分子和凝固态物质的相互作用, 这类研究涉及到固体表面物理、半导体物理、超导体、凝聚态物理、化学、光谱学、非线性光学、生物学、医学、材料、能源、
自由电子激光器的应用
由于自由电子激光器具有许多一般激光器望尘莫及的优点, 所以自由电子激光器问世后不久,科学家们就开始着手于研究它的应用问题.自由电子激光特别适宜于研究光与原子、分子和凝固态物质的相互作用, 这类研究涉及到固体表面物理、半导体物理、超导体、凝聚态物理、化学、光谱学、非线性光学、生物学、医学、材料、能源、