光谱法研究蛋白质与表面活性剂的相互作用
摘要 结合本课题组的工作, 较系统地总结了近年来有关紫外吸收光谱、荧光光谱、圆二色光谱和电子自旋共振光谱技术在蛋白质-表面活性剂混合体系研究中的应用. 大量研究表明, 借助于光谱技术不仅可以研究蛋白质结构与功能的关系, 而且可以探讨蛋白质与表面活性剂的作用机理.点击这里进入下载页面:进入下载页面......阅读全文
紫外可见吸收光谱的紫外光谱
各种因素对吸收谱带的影响表现为谱带位移、谱带强度的变化、谱带精细结构的出现或消失等。谱带位移包括蓝移(或紫移,hypsochromic shift or blue shift))和红移(bathochromic shift or red shift)。蓝移(或紫移)指吸收峰向短波长移动,红移指吸收峰
紫外吸收光谱和红外吸收光谱的异同点
紫外吸收光谱:电子能级间的跃迁红外吸收光谱:振动能级间的跃迁
紫外吸收光谱和红外吸收光谱的异同点
紫外吸收光谱:电子能级间的跃迁红外吸收光谱:振动能级间的跃迁
红外吸收光谱与紫外可见吸收光谱的区别
一、两者的原理不同:1、紫外分光光度计的原理:物质的吸收光谱本质上就是物质中的分子和原子吸收了入射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同。因此,每种物质就有其特有的、固定的
红外吸收光谱与紫外可见吸收光谱的区别
紫外、可见吸收光谱常用于研究不饱和有机物,特别是具有共轭体系的有机化合物,而红外光谱法主要研究在振动中伴随有偶极矩变化的化合物(没有偶极矩变化的振动在拉曼光谱中出现)。因此,除了单原子和同核分子如Ne、He、O2、H2等之外,几乎所有的有机化合物在红外光谱区均有吸收。除光学异构体,某些高分子量的高聚
红外吸收光谱与紫外可见吸收光谱的区别
一、两者的原理不同:1、紫外分光光度计的原理:物质的吸收光谱本质上就是物质中的分子和原子吸收了入射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同。因此,每种物质就有其特有的、固定的
红外吸收光谱与紫外可见吸收光谱的区别
一、两者的原理不同:1、紫外分光光度计的原理:物质的吸收光谱本质上就是物质中的分子和原子吸收了入射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同。因此,每种物质就有其特有的、固定的
DNA定量法比较——紫外—可见吸收光谱和荧光光谱优势比较
通常情况下,对定量DNA应用荧光或紫外-可见光谱。两种方法各有优缺点,重要的是应考虑在整个分析中,包括上、下游工艺的方法。 对分子生物学家而言,DNA定量是一种重要而常规的技术。量化数据本身很少被当作实验的最终结果,更常见的是将其作为生物源提取物和下游使用、分析之间的桥梁。定量是重要的,但
DNA定量法比较—紫外—可见吸收光谱和荧光光谱优势比较
通常情况下,对定量DNA应用荧光或紫外-可见光谱。两种方法各有优缺点,重要的是应考虑在整个分析中,包括上、下游工艺的方法。 对分子生物学家而言,DNA定量是一种重要而常规的技术。量化数据本身很少被当作实验的最终结果,更常见的是将其作为生物源提取物和下游使用、分析之间的桥梁。定量是重要的,但
紫外可见吸收光谱原理
紫外可见吸收光谱原理:在有机化合物分子中有形成单键的σ电子、有形成双键的π电子、有未成键的孤对n电子。当分子吸收一定能量的辐射能时,这些电子就会跃迁到较高的能级,此时电子所占的轨道称为反键轨道,而这种电子跃迁同内部的结构有密切的关系。在紫外吸收光谱中,电子的跃迁有σ→σ*、n→σ*、π→π*和n→π
紫外吸收光谱的产生
紫外吸收光谱的产生同核双原子分子的分子轨道能级图吸光物质分子吸收特定能量(波长)的电磁波(紫外光)产生分子的电子能级跃迁。
紫外吸收光谱的原理
紫外吸收光谱和可见吸收光谱都属于分子光谱,它们都是由于价电子的跃迁而产生的。利用物质的分子或离子对紫外和可见光的吸收所产生的紫外可见光谱及吸收程度可以对物质的组成、含量和结构进行分析、测定、推断。 在有机化合物分子中有形成单键的σ电子、有形成双键的π电子、有未成键的孤对n电子。当分子吸收一定能
紫外吸收光谱的原理
紫外吸收光谱的原理是光在与物质作用时,物质可对光产生不同程度的吸收。我们利用测量物质对某些波长的光的吸收来了解物质的特性,这就是吸收光谱法的基础。物质的结构决定了物质在吸收光时只能吸收某些特定波长的吸收,也就是说,物质对光的吸收是具有选择性的。通过测量物质对不同波长的吸收程度(吸光度),以波长为横坐
紫外可见吸收光谱原理
紫外可见吸收光谱原理:在有机化合物分子中有形成单键的σ电子、有形成双键的π电子、有未成键的孤对n电子。当分子吸收一定能量的辐射能时,这些电子就会跃迁到较高的能级,此时电子所占的轨道称为反键轨道,而这种电子跃迁同内部的结构有密切的关系。在紫外吸收光谱中,电子的跃迁有σ→σ*、n→σ*、π→π*和n→π
紫外可见吸收光谱原理
1. 紫外可见吸收光谱产生的原理紫外可见吸收光谱是由于分子(或离子)吸收紫外或者可见光(通常200-800 nm)后发生价电子的跃迁所引起的。由于电子间能级跃迁的同时总是伴随着振动和转动能级间的跃迁,因此紫外可见光谱呈现宽谱带。紫外可见吸收光谱的横坐标为波长(nm),纵坐标为吸光度。紫外可见吸收光谱
原子吸收光谱与紫外可见吸收光谱之间的区别
1、紫外-可见吸收光谱除了分子外层电子能级跃迁外,还有分子的振动和转动能级的跃迁,是一种宽带吸收(10-1—10-2nm) 2、原子吸收光谱是由于原子外层电子能级的跃迁,是一种窄带吸收(10-3nm) 原子化火焰的温度:两千度到三千度左右(温度过高会使原子最外层的电子吸收能量跃迁至激发态,这
紫外吸收光谱原理是什么
紫外吸收光谱和可见吸收光谱都属于分子光谱,它们都是由于价电子的跃迁而产生的。利用物质的分子或离子对紫外和可见光的吸收所产生的紫外可见光谱及吸收程度可以对物质的组成、含量和结构进行分析、测定、推断。 紫外可见吸收光谱应用广泛,不仅可进行定量分析,还可利用吸收峰的特性进行定性分析和简单的结构分析,
紫外吸收光谱有何特征
紫外吸收光谱主要是反应了π电子,特别是共轭体系的π电子的跃迁,也有n电子(非键轨道)的跃迁,一般紫外分光计是200nm以上,所观察到的是π到π*,n到π*的跃迁,一些常见物质的最大吸收波长可以通过查表得到
紫外/可见吸收光谱测量
荷兰Avantes公司突破了传统分光光度计采用转动光栅进行光谱扫描的技术,使用2048像素CCD阵列探测器和平面衍射光栅,实现了不必转动光栅而对整个光谱的快速测量,每秒可实现900幅光谱的超高速采样,保证了测量的准确性和重复性,同时搭配浸入式光纤探头或流通池进行取样,从而适用于野外测量、应急检测、在
紫外可见吸收光谱的性质
1. 同一浓度的待测溶液对不同波长的光有不同的吸光度;2. 对于同一待测溶液,浓度愈大,吸光度也愈大;3. 对于同一物质,不论浓度大小如何,很大吸收峰所对应的波长(很大吸收波长 λmax) 相同,并且曲线的形状也完全相同。
紫外可见吸收光谱法
分子的紫外-可见吸收光谱法是基于分子内电子跃迁产生的吸收光谱进行分析的一种常用的光谱分析法。分子在紫外-可见区的吸收与其电子结构紧密相关。紫外光谱的研究对象大多是具有共轭双键结构的分子。胆甾酮(a)与异亚丙基丙酮(b)分子结构差异很大,但两者具有相似的紫外吸收峰。两分子中相同的O=C-C=C共轭结构
影响紫外吸收光谱的因素
影响紫外吸收光谱的主要因素有位阻影响,跨环反应,溶剂效应,体系pH值影响。
紫外—可见吸收光谱的产生
4.1.1.1 分子光谱和电子光谱紫外—可见分光光度法是利用某些物质的分子对波长范围在200~800nm的电磁波的吸收作用来进行分析测定的一种方法。分子的紫外—可见吸收光谱是由价电子能级的跃迁而产生的。分子,甚至是最简单的双原子分子的光谱,也要比原子光谱复杂得多。这是由于在分子中,除了电子相对于原子
紫外吸收光谱产生的原因
分子具有不同的特征能级,当分子从外界吸收能量后,就会发生相应的能级跃迁,产生吸收光谱。物质分子吸收一定波长的紫外光时,分子内电子发生跃迁,所产生的吸收光谱即为紫外吸收光谱。
紫外/可见吸收光谱测量
荷兰Avantes公司突破了传统分光光度计采用转动光栅进行光谱扫描的技术,使用2048像素CCD阵列探测器和平面衍射光栅,实现了不必转动光栅而对整个光谱的快速测量,每秒可实现900幅光谱的超高速采样,保证了测量的准确性和重复性,同时搭配浸入式光纤探头或流通池进行取样,从而适用于野外测量、应急检测、在
紫外可见吸收光谱的特征
1. 吸收峰的形状及所在位置——定性、定结构的依据2. 吸收峰的强度——定量的依据A = lg(1/T)=κCLT:透射率k:摩尔吸收系数,单位:L·cm⁻¹·mol⁻¹C:浓度L:光程长紫外可见光谱的两个重要特征波峰:λmax, κ例:λmaxEt = 279 nm (κ=5012,logk=3.
紫外—可见吸收光谱的产生
4.1.1.1 分子光谱和电子光谱紫外—可见分光光度法是利用某些物质的分子对波长范围在200~800nm的电磁波的吸收作用来进行分析测定的一种方法。分子的紫外—可见吸收光谱是由价电子能级的跃迁而产生的。分子,甚至是最简单的双原子分子的光谱,也要比原子光谱复杂得多。这是由于在分子中,除了电子相对于原子
紫外吸收光谱的产生原理
吸光物质分子吸收特定能量(波长)的电磁波(紫外光)产生分子的电子能级跃迁。电子跃迁类型1. 分子轨道有机分子中常见的分子轨道:σ轨道、π轨道和非键轨道 (未共用电子对n)分子轨道图如图22. 电子跃迁(transition)类型(1)σ~σ*跃迁:能级跃迁图由饱和键产生,能级差大,吸收光波波长短,吸
紫外光谱和荧光光谱的区别
紫外光谱是分子中某些价电子吸收了一定波长的电磁波,由低能级跃近到高能级而产生的一种光谱,也称之为电子光谱.目前使用的紫外光谱仪波长范围是200~800nm。其基本原理是用不同波长的近紫外光(200~400nm)依次照一定浓度的被测样品溶液时,就会发现部分波长的光被吸收。如果以波长λ为横坐标(单位nm
紫外光谱和荧光光谱的区别
紫外光谱是分子中某些价电子吸收了一定波长的电磁波,由低能级跃近到高能级而产生的一种光谱,也称之为电子光谱.目前使用的紫外光谱仪波长范围是200~800nm。其基本原理是用不同波长的近紫外光(200~400nm)依次照一定浓度的被测样品溶液时,就会发现部分波长的光被吸收。如果以波长λ为横坐标(单位nm