我国学者与海外合作者实现铁电薄膜带电畴壁精确操控

图 具有量化忆阻特性的面内带电畴壁的构建与原子级调控 在国家自然科学基金项目(批准号:12125407、52272129、U21A2067)等资助下,浙江大学材料科学与工程学院张泽院士、田鹤教授团队与新加坡国立大学陈景升教授团队、美国内布拉斯加大学林肯分校Tsymbal教授团队合作,在纳米级厚度的铁酸铋薄膜中,构建了一种全新的、具有量化多阻态忆阻行为的面内带电畴壁,并实现了其精确操控,刷新了人们对于铁电翻转行为的认识,并为发展晶胞级的新型存储器提供了新策略。相关成果以“铁电薄膜中具有忆阻行为的面内带电畴壁(In-plane charged domain walls with memristivebehaviour in a ferroelectric film)”为题,于2023年1月18日在《自然》(Nature)杂志刊发,文章链接:https://www.nature.com/articles/s41586-02......阅读全文

有机铁电薄膜材料的介绍

  有机铁电薄膜的制备方法包括溶胶-凝胶法、旋涂法(Spin-Coating)、分子束外延技术及Langmuir-Blod-get膜技术等。与传统的无机材料相比,有机聚合物材料具有易弯曲、柔韧性好、易加工、成本低等优点而备受关注。作为一种新型的铁电体,铁电高分子聚合物的研究主要以聚偏氟乙烯(Poly

金属所铁电薄膜异质界面及畴组态研究取得系列进展

  中国科学院金属研究所沈阳材料科学国家(联合)实验室固体原子像研究部研究员马秀良、朱银莲,博士刘颖、博士生李爽近来在铁电薄膜异质界面和同质界面的可控生长、调控以及微观结构性能方面获得系列新进展。  铁电材料由于丰富的物理性能和在铁电器件领域广泛的应用前景得到研究人员的广泛关注。由于电子器件小型化的

什么是铁电畴?

   为什么铁电体会有电滞回线?主要是因为铁电体是由铁电畴组成的。理想单畴铁电单晶体中,晶体内部所有区域的自发极化P全部指向同一方向,整个晶体将在内外部空间建立起电场。那么周围空间将储存相当大的静电能量,从能量角度来看,这种状态是不稳定的。因此,晶体中铁电相的自发极化总是会分裂成一系列极化方向不同的

什么是铁电畴?

为什么铁电体会有电滞回线?主要是因为铁电体是由铁电畴组成的。理想单畴铁电单晶体中,晶体内部所有区域的自发极化P全部指向同一方向,整个晶体将在内外部空间建立起电场。那么周围空间将储存相当大的静电能量,从能量角度来看,这种状态是不稳定的。因此,晶体中铁电相的自发极化总是会分裂成一系列极化方向不同的小区域

铁电材料电滞回线的测量

  测量铁电材料电滞回线的方法通常有两种:冲击检流计描点法和 Sawyer-Tower电路法。第二种方法可用超低频示波器进行观察以及用xy函数记录仪进行记录,简便迅速,故人们常常采用。    采用Sawyer-Tower电路准静态测试铁电陶瓷材料电滞回线的测量原理图(GB/T6426-1999)如

铁电材料电滞回线的测量

   测量铁电材料电滞回线的方法通常有两种:冲击检流计描点法和 Sawyer-Tower电路法。第二种方法可用超低频示波器进行观察以及用xy函数记录仪进行记录,简便迅速,故人们常常采用。    采用Sawyer-Tower电路准静态测试铁电陶瓷材料电滞回线的测量原理图(GB/T6426-1999)

金属所铁电超薄薄膜中强极化可持续性研究获进展

  近日,中国科学院金属研究所沈阳材料科学国家(联合)实验室固体原子像研究部研究员马秀良、朱银莲等,在超薄铁电薄膜中发现强极化的可持续性现象。  超薄铁电体在超级电容器等微纳电子领域有着广泛的应用前景。早在上世纪70年代人们认识到铁电薄膜中存在着一个临界尺寸,当薄膜厚度小于这个临界尺寸时,退极化场的

我国学者与海外合作者实现铁电薄膜带电畴壁精确操控

图 具有量化忆阻特性的面内带电畴壁的构建与原子级调控  在国家自然科学基金项目(批准号:12125407、52272129、U21A2067)等资助下,浙江大学材料科学与工程学院张泽院士、田鹤教授团队与新加坡国立大学陈景升教授团队、美国内布拉斯加大学林肯分校Tsymbal教授团队合作,在纳米级厚度的

铁电材料中电卡效应的制冷原理

  制冷是人们日常生活中必不可少的事情,从水果、蔬菜、肉类保鲜,到空调的使用,再到医用方面的器官冷藏、核磁共振成像等,都需要制冷。普通的压缩机制冷的方法已经差不多到了其极限,并且其排出的有机气体,直接破坏嗅氧层,引起了温室效应,对环境的破坏作用已越来越受到人们的重视。寻找新的制冷方式成为一项刻不容缓

新型二维铁电材料铁电畴结构的调控研究获进展

  铁电材料因具有稳定的自发极化,且在外加电场下具有可切换的极化特性,在非易失性存储器、传感器、场效应晶体管以及光学器件等方面具有广阔的应用前景。与传统的三维铁电材料不同,二维范德华层状铁电材料表面没有悬空键,这可降低表面能,有助于实现更小的器件尺寸。此外,传统三维铁电薄膜的外延生长需要合适的具有小

在铁电基片PMNPT上生长出与块材性质相当的FeRh合金薄膜

  随着人民生活水平的提高,制冷需求量急剧上涨,导致用于制冷的能耗大幅增加。传统气体压缩制冷技术使用的工质破坏大气臭氧层,加剧全球变暖。全球气候巴黎公约颁布以来,寻找一种替代传统气体压缩制冷的技术成为人们的迫切需求。基于磁热效应的固态制冷技术具有节能环保的特点,有望成为传统气体压缩制冷的替代技术。其

薄膜电弱点测试仪的研制

  电气用塑料薄膜的生产过程中,会出现薄膜穿孔、导电颗粒积聚、   划伤等影响电气性能的电弱点。根据国家标准《GB/T 13541-92 电气   用塑料薄膜试验方法》,电气用塑料薄膜要求进行电弱点测试,在给   定直流电压下每平方米的击穿点(电弱点)数成为衡量薄膜质量的重   要指标。设计

薄膜电弱点测试仪的研制

电气用塑料薄膜的生产过程中,会出现薄膜穿孔、导电颗粒积聚、划伤等影响电气性能的电弱点。根据国家标准《GB/T 13541-92 电气用塑料薄膜试验方法》,电气用塑料薄膜要求进行电弱点测试,在给定直流电压下每平方米的击穿点(电弱点)数成为衡量薄膜质量的重要指标。设计的薄膜电弱点测试仪,无须将膜卷分切成

铁电材料中的大电卡效应的应用前景

  制冷是人们日常生活中必不可少的事情, 从水果、蔬菜、肉类保鲜, 到空调的使用, 再到医用方面的核磁共振成像等, 都需要制冷。普通的压缩机制冷的方法已经差不多到了其极限, 并且其排出的有机气体, 直接破坏嗅氧层, 引起了温室效应, 对环境的破坏作用已越来越受到人们的重视。寻找新的制冷方式成为一项刻

Nature:原子尺度调控实现材料的室温铁电、多铁性

  日前来自康奈尔大学的科学家Darrell G. schlom(通讯作者)报道了一种构建室温条件下铁电和磁性耦合的单相多铁材料的新方法。作者采用LuFe2O4作为表面矩阵,在合成过程中引入特殊的FeO单层材料,这样实现了(LuFeO3)m/(LuFe2O4)1超晶胞的构建。由于相邻的LuFeO3的

“微交联法”创制高弹性铁电材料

  8月4日,中国科学院宁波材料技术与工程研究所柔性磁电功能材料与器件团队在《科学》(Science)上,发表了题为Intrinsically elastic polymer ferroelectric by precise slight crosslinking的研究文章。该研究提出了铁电材料的本

Nature:铁电材料性能的预测与优化

  铁电材料是一种存在自发极化的材料,且自发极化有两个或多个可能的取向,在电场作用下,其取向可以改变。它具有介电、压电、热释电、铁电以及电光效应、声光效应、光折变效应和非线性光学效应等重要特性。铁电体概括起来可以分成两大类,一类以KH2PO4为代表,具有氢键,从顺电相过渡到铁电相是无序到有序的相变,

多铁性铁酸铋外延薄膜受极化调制的导电特性研究的进展

  BiFeO3(BFO)作为室温单相多铁性材料,不但具有优越的铁电特性,同时由于电、磁、应变之间的耦合作用,可以实现用电场控制磁化,是研究新型多态磁电存储器的首选材料。最近有文献报道了在BFO单晶中又观察到了与铁电极化相关的可反转的二极管整流特性。这种受铁电极化调控的导电行为,不但增加了多铁性BF

电致变色氢键有机框架薄膜研究新进展

  电致变色材料被广泛应用于智能窗户、信息存储和防眩晕后视镜等领域。研究较多的电致变色材料主要有金属氧化物、紫精类化合物、共轭聚合物等。目前,尚无氢键有机框架化合物(HOFs)应用于电致变色的研究报道。然而,HOFs应用于该领域具有独特优势:HOFs材料无需引入额外的基团(如引入官能团进行配位、聚合

多铁性材料可将热直接转化为电

  据美国物理学家组织网近日报道,从1824年开始,工程师们就已学会利用液体水和气体水之间的相变来发电。现在,美国科学家开始探索使用名为多铁性材料的金属合金发生“相变”来直接将热转化为电。  美国明尼苏达大学的理查德·詹姆斯领导的团队希望利用多铁性材料中自然出现的相变代替水的相变来发

新型铁电材料可变身机器人“肌肉”

  美国科学家领导的一个国际研究小组表示,他们研制出的一种新型铁电聚合物,能高效地将电能转化为机械应变,有望成为一种高性能的运动控制器(致动器),在医疗设备、先进机器人和精密定位系统中大显身手,例如作为机器人的“肌肉”等。相关研究论文发表于最近的《自然·材料》杂志。  铁电材料是一类在施加外部电荷时

新型铁电材料可变身机器人“肌肉”

原文地址:http://news.sciencenet.cn/htmlnews/2023/7/504035.shtm

氧化铪基铁电存储材料研究取得进展

互联网、人工智能等信息技术的快速发展,对存储器的存储密度、访问速度及操作次数提出了更高的要求。氧化铪基铁电存储器具有低功耗、高速、高可靠性等优势,被认为是下一代非易失性存储器技术的潜在解决方案。现在普遍研究的正交相(orthorhombic phase,简称“o相”)HfO2基铁电材料由于自身高铁电

氧化铪基铁电存储材料研究取得进展

互联网、人工智能等信息技术的快速发展,对存储器的存储密度、访问速度及操作次数提出了更高的要求。氧化铪基铁电存储器具有低功耗、高速、高可靠性等优势,被认为是下一代非易失性存储器技术的潜在解决方案。现在普遍研究的正交相(orthorhombic phase,简称“o相”)HfO2基铁电材料由于自身高铁电

美研制新型非易失性铁电存储设备

  据美国物理学家组织网近日报道,美国科学家们正在研制一种新的计算机存储设备——铁电晶体管随机存取存储器(FeTRAM),其将比现在的商用存储设备更快捷,且比占主流的闪存能耗更低。研究发表在美国化学学会的《纳米快报》杂志上。   这种最新的存储设备将由硅纳米线和铁电聚合物集合而成。铁

铁电反常光伏效应研究取得新进展

  铁电光伏是上世纪七十年代在研究铁电材料的光电子学性质时发现的一种新的重要的物理效应。因与常规的p-n结型太阳能电池的光伏效应存在根本差别,这种现象常被称为反常光伏效应或者体光伏效应。近年来,随着人类社会对能源环境问题的持续关注,关于铁电光伏效应的研究持续升温。目前,关于铁电光伏效应的物理机制已有

铁电材料中发现通量全闭合畴结构

  记者日前从中国科学院金属研究所获悉,该所研究员马秀良研究团队与合作者在铁电材料中发现通量全闭合畴结构,或让铁电材料实现超高密度信息存储。  铁电材料是指在外加电场的作用下,其电极化方向可以发生改变的一类材料,如钛酸铅、钛酸钡等材料。铁电存储器具有功耗小、读写速度快、寿命长与抗辐照能力强等优点,但

科学家揭秘铁电材料的光电机制

  美国能源部劳伦斯伯克利国家实验室及加州大学伯克利分校的研究人员揭开了铁电材料在光照条件下产生高压电的秘密。该研究发表在《物理评论快报》上。   铁电材料是指具有铁电效应的一类材料,它是热释电材料的一个分支。铁电材料及其应用研究已成为凝聚态物理、固体电子学领域最热门的研究课题之一。

金属所在铁电异质界面发现极化巨大增强现象

  铁电材料由于具有铁电、介电、压电、热释电等丰富的物理性能,被广泛应用于非易失性铁电存储器、电容器、制动器、热释电探测器等电子器件中。为满足电子器件小型化的发展需求,铁电体需要以低维薄膜的形式集成到电子器件中。但是,随着薄膜厚度的减小,在异质界面去极化场的作用下,铁电极化会显著降低甚至消失,如何保

宁波材料所以“微交联法”创制高弹性铁电材料

  8月4日,中国科学院宁波材料技术与工程研究所柔性磁电功能材料与器件团队在《科学》(Science)上,发表了题为Intrinsically elastic polymer ferroelectric by precise slight crosslinking的研究文章。该研究提出了铁电材料的本