什么是赤霉素

1926年,日本人黑泽英一从对水稻恶苗病的研究中发现了另外一种植物激素——赤霉素。日本人发现,稻田中总有一些水稻会染上一种疯长病,表现为植株生长异常旺盛,但结实率很低。这样的水稻不但自己生长要消耗大量的肥、水,还影响了周围水稻的采光、通风和吸取营养,因此被称为恶苗,这种会在植物间传染的病就被称为恶苗病。黑泽英一在研究患恶苗病的植株时发现,这类植株都被传染上了一种叫赤霉菌的病菌,而赤霉菌会分泌出一种物质,正是这种物质,在进入水稻体内后就会造成水稻植株的疯长,使水稻植株患上恶苗病,由于这种新发现的植物激素是由赤霉菌分泌出来的,于是人们就把它叫做赤霉素。......阅读全文

植物所发现马达蛋白调控赤霉素合成与细胞伸长的新途径

  马达蛋白(motor protein)是依赖于细胞骨架蛋白将化学能转变为机械能的一类蛋白,在动植物细胞生长和细胞分裂中是必不可少的。但是除提供能量之外,该类蛋白在动物和植物细胞中是否还具有其它生理功能还不为人所知。植物研究所种康研究组与其合作者发现并证实了一个kinesin类型马

赤霉酸920在芒果使用上多少温度有效

赤霉酸920在芒果使用上温度在18度以上有效。当温度骤降至18℃以下,920几乎失效。920也被称为赤霉素、赤霉酸、九二零、齐宝。基本介绍920也被称为赤霉素、赤霉酸、九二零、齐宝。目前市面上主要的剂型有4%可溶液剂、10%、20%可溶粉剂,3%、4%乳油。赤霉素种类众多,据统计有100多种,但多数

研究揭示水稻DELLA蛋白的表观调控新机制

  9月11日,华中农业大学作物遗传改良全国重点实验室、湖北洪山实验室水稻团队教授周道绣和赵毓课题组在国际期刊EMBO Journal在线发表了研究论文,揭示了水稻DELLA蛋白抑制基因表达的表观调控新机制。  20世纪60年代以来,矮杆作物以其抗倒伏和收获指数高等优势,极大地增加了粮食产量。生长抑

脱落酸的作用机理

脱落酸的生理作用主要是导致休眠及促进脱落。用脱落酸处理植物生长旺盛的小枝,可以引起与休眠相同的状态;产生芽鳞状的叶子代替展开的营养叶;减少顶端分生组织的有丝分裂活动;并能引起下面的叶子脱落和防止休眠的解除。用脱落酸处理能萌发的种子,可以使之休眠。这种对萌发的抑制作用可以用赤霉素或细胞分裂素处理来抵消

脱落酸的生理作用

脱落酸的生理作用主要是导致休眠及促进脱落。用脱落酸处理植物生长旺盛的小枝,可以引起与休眠相同的状态;产生芽鳞状的叶子代替展开的营养叶;减少顶端分生组织的有丝分裂活动;并能引起下面的叶子脱落和防止休眠的解除。用脱落酸处理能萌发的种子,可以使之休眠。这种对萌发的抑制作用可以用赤霉素或细胞分裂素处理来抵消

概述脱落酸的作用机理

  脱落酸的生理作用主要是导致休眠及促进脱落。用脱落酸处理植物生长旺盛的小枝,可以引起与休眠相同的状态;产生芽鳞状的叶子代替展开的营养叶;减少顶端分生组织的有丝分裂活动;并能引起下面的叶子脱落和防止休眠的解除。用脱落酸处理能萌发的种子,可以使之休眠。这种对萌发的抑制作用可以用赤霉素或细胞分裂素处理来

植物生长调节剂的常见分类介绍

  常见的植物生长调节剂有速效 胺鲜酯( DA-6), 氯吡脲, 复硝酚钠, 芸苔素, 赤霉素。  延长贮藏器官休眠 胺鲜酯(DA-6),氯吡脲,复硝酚钠,青鲜素, 萘乙酸钠盐,萘乙酸甲酯。  打破休眠促进萌发 赤霉素、 激动素、胺鲜酯(DA-6),氯吡脲,复硝酚钠,硫脲,氯乙醇,过氧化氢。  促进

植物生长调节剂的常见分类

常见的植物生长调节剂有速效胺鲜酯(DA-6),氯吡脲,复硝酚钠,芸苔素,赤霉素。延长贮藏器官休眠 胺鲜酯(DA-6),氯吡脲,复硝酚钠,青鲜素,萘乙酸钠盐,萘乙酸甲酯。打破休眠促进萌发 赤霉素、激动素、胺鲜酯(DA-6),氯吡脲,复硝酚钠,硫脲,氯乙醇,过氧化氢。促进茎叶生长 赤霉素、胺鲜酯(DA-

日本将修改农兽药残留限量-含赤霉素-莫奈太尔-氟苯脲等

  6月22日,厚生劳动省食品标准审查课发布了关于《食品、添加剂等的规格基准(赤霉素等7种物质的残留限量和豁免物质列表)》的部分修改征求意见稿,该意见征集稿已于7月21日截止。根据意见征集结果,将于9月发布正式修改公告。图片源自网络  修改内容:修改赤霉素、二甲噻草胺、氟苯脲、氟唑菌酰胺、fluxa

植物激素的分类

即生长素(auxin)、赤霉素(GA)、细胞分裂素(CTK)、脱落酸(abscisic acid,ABA)、乙烯(ethylene,ETH)和油菜素甾醇(brassinosteroid,BR)。它们都是些简单的小分子有机化合物,但它们的生理效应却非常复杂、多样。例如从影响细胞的分裂、伸长、分化到影响

植物激素的分类

即生长素(auxin)、赤霉素(GA)、细胞分裂素(CTK)、脱落酸(abscisic acid,ABA)、乙烯(ethylene,ETH)和油菜素甾醇(brassinosteroid,BR)。它们都是些简单的小分子有机化合物,但它们的生理效应却非常复杂、多样。例如从影响细胞的分裂、伸长、分化到影响

植物激素的化学结构和主要种类

即生长素(auxin)、赤霉素(GA)、细胞分裂素(CTK)、脱落酸(abscisic acid,ABA)、乙烯(ethylene,ETH)和油菜素甾醇(brassinosteroid,BR)。它们都是些简单的小分子有机化合物,但它们的生理效应却非常复杂、多样。例如从影响细胞的分裂、伸长、分化到影响

葡萄无籽是“服”了避孕药?

   近日,民间流传,无籽葡萄是因为涂抹避孕药所致,更有人表示,吃了这样的葡萄会导致不孕不育。一言流出,让无籽葡萄一时滞销,看似无所不能避孕药让美味的蔬菜瓜果成为了避之不及的“药品”。  无辜的葡萄  虽然人们对于蔬菜瓜果种植期间施肥、用药有一定的认知,但当流言来时也会产生怀疑,无籽葡萄真的与避孕药

植物激素的种类及其主要作用

植物激素有五类,即生长素(Auxin)、赤霉素(GA)、细胞分裂素(CTK)、脱落酸(ABA)和乙烯(ethyne,ETH)。植物激素是植物体内合成的对植物生长发育有显著作用的几类微量有机物质。也被成为植物天然激素或植物内源激素。它们都是些简单的小分子有机化合物,但它们的生理效应却非常复杂、多样。例

植物激素的种类及其主要作用

植物激素有五类,即生长素(Auxin)、赤霉素(GA)、细胞分裂素(CTK)、脱落酸(ABA)和乙烯(ethyne,ETH)。植物激素是植物体内合成的对植物生长发育有显著作用的几类微量有机物质。也被成为植物天然激素或植物内源激素。它们都是些简单的小分子有机化合物,但它们的生理效应却非常复杂、多样。例

中科院童红宁博士研究揭示油菜素内酯决定水稻身高

  中科院遗传发育所植物基因组学国家重点实验室储成才研究组童红宁博士,通过对大量水稻激素相关突变体的分析,系统揭示了两种植物株高决定性激素油菜素内酯与赤霉素间的关系,这一研究成果11月4日在线发表在植物学领域顶级杂志《植物细胞》上。  作为新发现的绿色环保型植物生长调节剂,油菜素内酯是活性最高的高效

植物激素的作用和分类

植物激素的作用植物激素是植物细胞接受特定环境信号诱导产生的、低浓度时可调节植物生理反应的活性物质。在细胞分裂与伸长、组织与器官分化、开花与结实、成熟与衰老、休眠与萌发以及离体组织培养等方面,分别或相互协调地调控植物的生长发育与分化。分类即生长素(auxin)、赤霉素(GA)、细胞分裂素(CTK)、脱

植物激素的作用和分类介绍

  植物激素的作用  植物激素是植物细胞接受特定环境信号诱导产生的、低浓度时可调节植物生理反应的活性物质。在细胞分裂与伸长、组织与器官分化、开花与结实、成熟与衰老、休眠与萌发以及离体组织培养等方面,分别或相互协调地调控植物的生长发育与分化。  分类  即生长素(auxin)、赤霉素(GA)、细胞分裂

周口师范学院从小桐子中克隆出基因提高水稻抗倒伏能力

  近日,周口师范学院河南省作物分子育种与生物反应器重点实验室唐跃辉博士带领团队,从小桐子中克隆获得了影响水稻株高和响应盐胁迫的基因,能够提高水稻抗倒伏的能力。该研究成果在线发表于《植物科学前沿》。  唐跃辉研究团队从小桐子中克隆获得了一个AP2/ERF家族基因,命名为JcDREB2,拟南芥原生质体

我国学者发现提高NGR5和GRF4表达量可提高水稻氮肥利用率

  上世纪60年代,以矮化育种为标志的“绿色革命”使水稻和小麦具有耐高肥、抗倒伏和高产的优良特性,但同时也存在氮肥利用效率低的缺点,其产量增加对化肥的依赖性高。持续大量的氮肥投入不仅增加种植成本,还导致环境污染。农业农村部公布2019年我国三大粮食作物的化肥利用率为39.2%,远低于世界平均水平,更

碰一碰,不说话的植物反应很激烈

植物如何对非常微弱的机械性刺激——触碰做出响应是非常有趣的科学问题。 以往,我们知道触碰含羞草、捕蝇草等植物,它们会迅速做出运动响应,而大多数植物对触碰的响应需要经过一段时间才能观察到。 近日,著名国际期刊《植物生理学》在线发表的一项研究成果,围绕在拟南芥中,乙烯和茉莉酸信号传导交汇于赤霉素

植物抗病与发育调控合作研究新进展

  植物抗病性往往以发育抑制作为代价,但相关的调控机制不清楚。为此,中科院上海生命科学研究院植物生理生态研究所何祖华研究组与美国的课题组经过长期的合作研究,在抗病与发育激素的交互作用的机制上取得了重要进展。相关研究成果于4月23日以加长文的形式在线发表于《美国国家科学院院刊》。  茉

我国学者揭示OsDSK2a在植物逆境胁迫应答中的调控功能

  近日,中国农业科学院生物技术研究所作物耐逆性调控与改良团队在水稻耐盐性调控机理研究中取得重大突破,首次揭示了泛素受体蛋白通过调节赤霉素代谢平衡植物生长和盐胁迫应答的分子机制。该研究为作物耐盐性育种提供新思路,具有重要的指导意义。相关研究结果在线发表在《植物细胞(The Plant Cell)》上

脱落酸的相关知识

脱落酸是植物五大天然生长调节剂之一,生物学种常用作植物组织培养。脱落酸在衰老的叶片组织、成熟的果实、种子及茎、根部等许多部位形成。水分亏缺可以促进脱落酸的形成。 脱落酸的作用: 1.一直与促进生长,外施脱落酸浓度大时抑制茎、下胚轴、根、胚芽鞘或叶片的生长.浓度低时却促进离体黄瓜子叶

黄继荣小组揭示植物花青素合成调控机理

  中科院上海生命科学研究院植物生理生态研究所黄继荣课题组,通过解析赤霉素信号转导途径中关键因子DELLA蛋白调控花青素合成的分子机理,揭示了植物通过调控次生代谢产物合成适应环境变化的新机制。相关成果日前发表于《分子植物》。  大量的研究表明,植物抵御环境胁迫的强大武器是产生种类丰富的次生代谢产物。

牵牛子的化学成分

  1.牵牛种子含牵牛子甙(pharbitin)约3%,系树脂性甙,用碱水解得到牵牛子酸(pharbitic acid),巴豆酸(tiglic acid),裂叶牵牛子酸(nilic acid),α-甲基丁酸(α-methylbutyric acid)及戊酸(valeric acid)等。牵牛子酸为混

王志勇教授解析植物激素指挥系统

  阳光不仅是地球的能量源,也是指导植物生长的环境信号。植物对光的敏感性引起了科学家的强烈兴趣,了解植物对光和温度的敏感性能帮助改进农业生产,为人类提供更多的粮食。近日,卡内基研究院王志勇教授的实验室在Nature Cell Biology杂志上连发两篇文章,揭示了植物应对光和热环境改变的激素效

提高胼胝兜兰双花率和花期调控的方法获发明ZL

 处理后开双花的胼胝兜兰。曾宋君 供图 由中国科学院华南植物园研究员曾宋君等科研人员完成的“一种提高胼胝兜兰双花率和花期调控的方法”,近日获国家发明专利授权。 该发明公开了一种提高胼胝兜兰双花率和花期调控的方法,包括以下步骤,开花前,在具有4-5片叶的胼胝兜兰植株基部注射赤霉素溶液。该

植物五大生长激素的生理作用是什么

已知的植物内源激素主要有以下5类:生长素、赤霉素、细胞分裂素、脱落酸和乙烯。生长素最明显的作用是促进生长,但对茎、芽、根生长的促进作用因浓度而异。三者的最适浓度是茎>芽>根,大约分别为每升10E-5摩尔、10E-8摩尔、10E-10摩尔。植物体内吲哚乙酸的运转方向表现明显的极性,主要是由上而下。植物

科学家克隆番茄果实硬度新基因

近日,中国农业科学院蔬菜花卉研究所(以下简称蔬菜花卉所)品质分子改良课题组克隆了番茄中果实硬度关键调控基因FIS1,并揭示了该基因在番茄果实硬度形成中的功能,解析了赤霉素通路介导的番茄果实硬度的调控机制,为改良果实硬度提供了新的位点和策略。相关研究成果在线发表于《自然—通讯》。 蔬菜花卉所研究员