烟台海岸带所发表表面增强拉曼散射专题评述
近期,国际权威化学评述期刊——美国化学会Chemical Reviews发表了中科院烟台海岸带研究所以陈令新研究员为核心的“环境微分析与监测”创新团队,关于表面增强拉曼散射(Surface- enhanced Raman scattering,SERS)技术的评述文章——SERS Tags: Novel Optical Nanoprobes for Bioanalysis(Y.Q. Wang, B. Yan, L.X. Chen*, Chem. Rev., 2013, 113 (3), 1391–1428)。Chemical Reviews是国际化学一级学科顶级期刊,影响因子40.197(2011年)。 文章介绍了表面增强拉曼散射“标签”(SERS tags)这一纳米光学生物分析探针的最新进展。近年来,SERS分析探针和相关光谱分析技术在生物分析检测领域展现了巨大的应用潜力,并以其能够解决......阅读全文
表面增强拉曼散射的研究进展
许丰瑞,刘春霞,马凤国(1 青岛科技大学橡塑材料与工程教育部重点实验室,山东青岛 266042;2 青岛科技大学自动化与电子工程学院,山东青岛 266042) 摘要: 表面增强拉曼散射(SERS)的研究是当下最热门的研究领域之一,在分子检测领域有着重大的应用潜力。该文围绕表面增强拉曼散射及其增强机
大咖讲堂-|-相干拉曼散射显微术-Ⅱ
上节我们讲到——相干拉曼散射(CRS)显微术是一种基于分子化学键振动的成像手段。相比于荧光光谱,拉曼光谱具有窄得多的谱峰宽度(图 1),可以选择探测的分子种类将更多,特异性也更高。例如,生物组织中的蛋白、脂质和核酸等具有各自的拉曼光谱特征,利用 CRS 可以在无需染色/标记的前提下对它们进行区分
激光增强拉曼散射的概念和原理
中文名称激光增强拉曼散射英文名称laser stimulated Raman scattering定 义当激光的频率接近或等于被测分子的电子吸收频率时,某一条或几条特定的拉曼线强度会急剧增强(一般会增强100~1 000 000倍)的散射现象。应用学科生物化学与分子生物学(一级学科),方法与技术(
拉曼散射截面积是什么概念
物理含义就是,在某个频率处拉曼散射的几率,这时光谱学上的概念,由拉曼介质的拉曼散射谱来计算。近似的概念还有:发射截面,吸收界面等等,都是光谱学上的东西。
新型表面增强拉曼散射检测平台问世!
安徽理工大学力学与光电物理学院青年教师蓝雷雷与东南大学物理学院邱腾课题组合作,制备出两种类型的二维碳化钒(V4C3和V2C)MXenes材料,并证明这种材料可以作为性能优异的表面增强拉曼散射(SERS)平台,其中V4C3作为SERS活性材料首次报道。相关研究成果发表于《美国化学会-应用材料与界面》。
贵金属纳米结构组装及其表面增强拉曼散射应用研究获进展
近期,中国科学院合肥物质科学研究院固体物理研究所研究员孟国文课题组和美国西弗吉尼亚大学教授吴年强研究小组合作,在贵金属纳米结构组装及其表面增强拉曼散射(SERS)应用研究方面取得新进展,相关结果以封面论文发表在《纳米研究》(Nano Res. 2015, 8, 957-966)上。 由于电磁增
解析拉曼光譜應用
拉曼光譜(Raman)中的訊號提供了化學鍵、官能基的資訊, 也可以用來確認結構資訊 (例如: 甲、乙醇的化學結構差異), 手持式拉曼光譜儀, 設計了複雜的光學路徑與組件, 利用雷射光源照射在樣品表面上, 即得到光譜資訊, 再利用儀器內部的數據庫比對物質分析結果。 文章链接:仪器设备网 ht
物理所建立新的拉曼散射理论
超高灵敏度探测和超高空间分辨率成像是所有光学探测和成像工具的终极奋斗目标,将二者结合起来将成为揭示微观世界物理和化学现象及其本源机理的强大武器。拉曼光谱通过光与分子的非弹性散射光谱信息揭示分子内部的转动和振动形态,是识别分子化学结构的有效手段,也是研究分子结构变化的重要工具,已经广泛应用于自然科
纳米颗粒跟踪分析技术以及光散射技术在表征脂...(一)
纳米颗粒跟踪分析技术以及光散射技术在表征脂质体作为药物载体中的应用及效果作者Pauline Carnell马尔文仪器公司高级应用科学家Mike Kazsuba马尔文仪器公司技术支持经理马尔文仪器公司的高级应用科学家Pauline Carnell和技术支持经理Mike Kazsuba探讨了纳米颗粒跟踪
纳米颗粒跟踪分析技术以及光散射技术在表征脂...(二)
颗粒的运动速度与由斯托克斯-爱因斯坦方程(图3)计算出来的球体等效流体力学半径相关。NTA技术能逐粒计算粒度,且因有影像片段作分析基础,用户可精确表征实时动态。 图3:斯托克斯-爱因斯坦方程 NTA技术能让研究人员在同一时间观察单个纳米颗粒,因此除基础的粒度分析以外,还能测定每个脂质体的相对光散射强
怎样用微分散射截面表示拉曼散射强度公式
“拉曼散射”是指一定频率的激光照射到样品表面时,物质中的分子吸收了部分能量,发生不同方式和程度的振动(例如:原子的摆动和扭动,化学键的摆动和振动),然后散射出较低频率的光。频率的变化决定于散射物质的特性,不同原子团振动的方式是惟一的,因此可以产生特定频率的散射光,其光谱就称为“指纹光谱”,可以照此原
5分钟读懂拉曼光谱
什么是拉曼光谱拉曼光谱是一种无损的分析技术,它是基于光和材料内化学键的相互作用而产生的。激光光源的高强度入射光被分子散射时,大多数散射光与入射激光具有相同的波长(颜色),不能提供有用的信息,这种散射称为瑞利散射。然而,还有极小一部分(大约1/109)散射光的波长(颜色)与入射光不同,其波长的改变由测
手性印迹表面增强拉曼散射检测技术获进展
原文地址:http://news.sciencenet.cn/htmlnews/2022/10/488309.shtm a) SERS-CIP检测策略示意图;b)含SERS标记物的SERS-CIP玻璃毛细管照片,识别区域用红色圆圈表示;c)在SERS-CIP上实现手性氨基酸识别检测原理
拉曼散射应用于鉴别毒品相关介绍
常见毒品均有相当丰富的拉曼特征位移峰,且每个峰的信噪比较高,表明用拉曼光谱法对毒品进行成分分析方法可行,得到的谱图质量较高。由于激光拉曼光谱具有微区分析功能,即使毒品和其它白色粉末状物质混和在一起,也可以通过显微分析技术对其进行识别,得到毒品和其它白色粉末分别的拉曼光谱图。利用拉曼光谱可以监测物质的
新综述阐释表面增强拉曼散射研究进展
原文地址:http://news.sciencenet.cn/htmlnews/2024/1/516015.shtm近日,华东理工大学化学与分子工程学院教授王灵芝团队在《化学学会评论》上发表了题为“表面增强拉曼光谱用于光催化反应研究的进展”的内封面综述论文。 表面增强拉曼光谱用于光催化反应研
奥谱天成:拉曼光谱的优势及应用
红外光谱 拉曼光谱 共同点 给定基团的红外吸收波数与拉曼位移完全相同,两者均在红外光区,都反映分子的结构信息 产生的机理 振动引起偶极矩或电荷分布变化 电子云分布瞬间极化产生诱导偶极 入射光光源 红外光 紫外-近红外 光学原理 光
拉曼光谱的分析
通过的结构分析解释光谱: 分子为四面体结构,一个碳原子在中心,四个氯原子在四面体的四个顶点。当四面体绕其自身的一轴旋转一定角度,或记性反演(r—-r)、或旋转加反演之后,分子的几何构形不变的操作称为对称操作,其旋转轴成为对称轴。CCI4有13个对称轴,有案可查4个对称操作。我们知道,N个原子构
美国研制出超灵敏传感器-探测灵敏度增强10亿倍
据美国物理学家组织网3月22日(北京时间)报道,美国科学家研制出一种超灵敏传感器,可使用其增强的拉曼散射来探测包括癌症信号、炸药等物质,其灵敏度比普通拉曼散射传感器增强了10亿倍。 拉曼散射是指光通过介质时由于入射光与分子运动相互作用而引起光的频率变化,1928年由印度物理
拉曼光谱仪氧化亚铜纳米线的拉曼光谱研究
氧化亚铜为一价铜的氧化物,是鲜红色粉末状固体,几乎不溶于水,在酸性溶液中化为二价铜。它是一种重要的P型半导体材料,禁带宽度仅为2.1eV,光电转换效率可达到18%。1998年氧化亚铜被发现可作为催化剂在阳光下将水分解成氢气和氧气,证明是一种极具前景的光催化氧化材料。现今,随着纳米材料的发展,不仅已经
拉曼光谱仪氧化亚铜纳米线的拉曼光谱研究
介绍 氧化亚铜为一价铜的氧化物,是鲜红色粉末状固体,几乎不溶于水,在酸性溶液中化为二价铜。它是一种重要的P型半导体材料,禁带宽度仅为2.1eV,光电转换效率可达到18%。1998年氧化亚铜被发现可作为催化剂在阳光下将水分解成氢气和氧气,证明是一种极具前景的光催化氧化材料。现今,随着纳
拉曼光谱技术综述
【摘要】本文从拉曼散射原理出发,介绍了拉曼技术的特征,以及拉曼技术的优势和不足,从激光技术和纳米技术出发介绍了当前拉曼技术的广泛发展和应用。综述了近年来了曼技术的主要的分析技术。涉及拉曼光谱技术的发展简史,发展现状和最新研究进展等方面。 1、拉曼光谱的发展简史 印度物理学家拉曼于1928年
中国科大首次实现紧邻不同分子的拉曼光谱识别
纳米尺度上的化学识别对于微观结构的设计与功能调控至关重要,而实现相邻不同分子的化学识别则代表着识别技术的一种极限挑战。最近,中国科学技术大学微尺度物质科学国家实验室单分子科学团队董振超研究组朝着这一极限目标又迈出了重要一步——他们继2013年成功实现亚纳米分辨的单分子拉曼光谱成像之后,又在国际上
SERS、TERS-谁能实现拉曼亚纳米分辨?
纳米尺度上的化学识别对于微观结构的设计与功能调控至关重要,而实现相邻不同分子的化学识别则代表着识别技术的一种极限挑战。最近,中国科学技术大学微尺度物质科学国家实验室单分子科学团队董振超研究组朝着这一极限目标又迈出了重要一步——他们继2013年成功实现亚纳米分辨的单分子拉曼光谱成像之后,又在国际上
深圳大学在拉曼纳米激光研究方面取得重要进展
在国家自然科学基金项目(项目编号:51502175,61575129,11304206)资助下,深圳大学光电工程学院阮双琛教授团队在拉曼纳米激光研究方面取得重要进展,研究成果近期以“A Thresholdless Tunable Raman Nanolaser using a ZnO–Graph
实验室光学仪器拉曼分析仪散射光收集方式
散射光的收集方式有透镜收集和镜面反射收集两种,散射光与激光束之间有三种关系0°(前散射)、90°与180°(背散射)。在实际应用中以90°和180°两种较多。180°的镜面反射收集方式收集效率最高,但需要仔细调整样品位置,稍微偏离最佳位置,拉曼信号明显下降。大样品散射光收集一般采用透镜方式。
光谱界的“电镜”:拉曼光谱已经实现亚纳米颗粒分析
据物理学家组织网近日报道,日本科学家开发出一种新拉曼光谱法,使研究人员能分析直径仅0.5~2纳米金属颗粒的化学成分和结构。这一最新突破有望使科学家开发出新型微材料,广泛应用于电子、生物医学、化学等领域。金属纳米颗粒拥有广泛的潜在应用前景,正成为现代研究领域的“香饽饽”。研究人员目前已能分析出直径
烟台海岸带所发表表面增强拉曼散射专题评述
近期,国际权威化学评述期刊——美国化学会Chemical Reviews发表了中科院烟台海岸带研究所以陈令新研究员为核心的“环境微分析与监测”创新团队,关于表面增强拉曼散射(Surface- enhanced Raman scattering,SERS)技术的评述文章——SER
如何区别荧光,磷光,瑞利光和拉曼光
荧光:是某些物质吸收一定的紫外光或可见光后,基态分子跃迁到激发单线态的各个不同能级,然后经过振动弛豫回到第一激发态的最低振动能级,在发射光子后,分子跃迁回基态的各个不同振动能级。这时分子发射的光称为荧光。荧光的波长比原来照射的紫外光的波长更长。磷光:是有些物质的激发分子通过振动弛豫下降到第一激发态的
拉曼散射光谱具有那几个明显的特征
a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; b.在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。 c.一
研究人员提出表面增强拉曼散射检测新策略
近日,中国科学院烟台海岸带研究所陈令新团队开发了简单、快速、高灵敏的表面增强拉曼散射(SERS)检测新策略,在纳米塑料检测技术方面取得进展。针对纳米塑料颗粒在SERS基底表面易团聚、分布不均以及难以高效嵌入信号增强“热点”区域等问题,该研究利用纳米粒子液-液界面自组装原理,将待测纳米塑料溶液与银纳米