大咖讲堂|相干拉曼散射显微术Ⅱ

上节我们讲到——相干拉曼散射(CRS)显微术是一种基于分子化学键振动的成像手段。相比于荧光光谱,拉曼光谱具有窄得多的谱峰宽度(图 1),可以选择探测的分子种类将更多,特异性也更高。例如,生物组织中的蛋白、脂质和核酸等具有各自的拉曼光谱特征,利用 CRS 可以在无需染色/标记的前提下对它们进行区分成像。 ” 但脱离应用的理论就像浩渺星海中失去坐标的飞船,空得一身高强本领却无处发挥。因此,秉承上节所述的相干拉曼显微术的基本原理,本小节将围绕快速病理检测、生物代谢和药物运输三个典型方面详细展开免标记相干拉曼显微术的应用,为这艘“神州飞船”的前行指引明灯。 ▲图 1. 常见生物组分和分子的拉曼光谱 快速病理检测: 病理检测是疾病诊断的金标准。现有的病理检测方法需要经过活检(或手术)取样、固定、切片、染色等一系列繁杂过程,往往耗时几天,无法实现术中实时诊断。术中冰冻往往也至少需要半个小时,而且......阅读全文

大咖讲堂-|-相干拉曼散射显微术-Ⅱ

  上节我们讲到——相干拉曼散射(CRS)显微术是一种基于分子化学键振动的成像手段。相比于荧光光谱,拉曼光谱具有窄得多的谱峰宽度(图 1),可以选择探测的分子种类将更多,特异性也更高。例如,生物组织中的蛋白、脂质和核酸等具有各自的拉曼光谱特征,利用 CRS 可以在无需染色/标记的前提下对它们进行区分

相干拉曼散射显微术详解-Ⅱ

上节我们讲到——相干拉曼散射(CRS)显微术是一种基于分子化学键振动的成像手段。相比于荧光光谱,拉曼光谱具有窄得多的谱峰宽度(图 1),可以选择探测的分子种类将更多,特异性也更高。例如,生物组织中的蛋白、脂质和核酸等具有各自的拉曼光谱特征,利用 CRS 可以在无需染色/标记的前提下对它们进行

相干拉曼散射显微术详解I

“一花一世界”,这句充满禅意的话在微观视野中得到完美诠释。而构成世间万千纷繁的原子由化学键联合为分子,不同的分子往往具有特异性的化学键振动,成为它们的指纹特征。相干拉曼散射(Coherent Raman Scattering,CRS)显微术便是通过探测目标分子的特征振动来提供成像所需的衬度, 同时基

太赫兹相干反斯托克斯拉曼散射显微镜

  太赫兹(THz)振动模式被认为存在于生物大分子中,在阐明其相应的生物功能方面具有重要的意义。然而,要观察这些生物大分子的低频振动模式是有挑战性的,尤其是在生物组织中。在THz区域缺乏一种可靠的高分辨率振动成像方法。所以,振动光谱成像在生物医学研究中具有重要的应用价值。然而,振动成像在太赫兹区域(

拉曼散射

1921 年,印度物理学家拉曼(C. V. Raman)从英国搭船回国,在途中他思考着为什么海洋会是蓝色的问题,而开始了这方面的研究,促成他于 1928 年 2 月发现了新的散射效应,就是现在所知的拉曼效应,在物理和化学方面都很重要。 1888 年 11 月,拉曼(他的全名是 Chandrasek

散射的拉曼散射

拉曼散射(Ramanscattering),光通过介质时由于入射光与分子运动相互作用而引起的频率发生变化的散射。又称拉曼效应。1923年A.G.S.斯梅卡尔从理论上预言了频率发生改变的散射。1928年,印度物理学家C.V.拉曼在气体和液体中观察到散射光频率发生改变的现象。拉曼散射遵守如下规律:散射光

散射的拉曼散射

拉曼散射(Ramanscattering),光通过介质时由于入射光与分子运动相互作用而引起的频率发生变化的散射。又称拉曼效应。1923年A.G.S.斯梅卡尔从理论上预言了频率发生改变的散射。1928年,印度物理学家C.V.拉曼在气体和液体中观察到散射光频率发生改变的现象。拉曼散射遵守如下规律:散射光

表面增强拉曼散射

表面增强拉曼散射(SERS):  这是使分子或晶体歌唱声音更强大的另一种方法,换句话说也是检测极少量物质的一种方法,目前人们已开始用这一方法检测单个分子了。1974年,Fleishmann等人发现,对光滑银电极表面进行粗糙化处理后,首次获得吸附在银电极表面上单分子层吡啶分子的高质量的拉曼光谱。随后V

拉曼散射现象的含义

光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分,非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应。

拉曼散射现象的含义

拉曼效应起源于分子振动(和点阵振动)与转动,因此从拉曼光谱中可以得到分子振动能级(点阵振动能级)与转动能级结构的知识。用虚的上能级概念可以说明了拉曼效应:设散射物分子原来处于声子基态,振动能级如图1所示。当受到入射光照射时,激发光与此分子的作用引起的极化可以看作为虚的吸收,表述为声子跃迁到虚态(Vi

拉曼散射的产生原理

光子和样品分子之间的作用可以从能级之间的跃迁来分析。样品分子处于电子能级和振动能级的基态,入射光子的能量远大于振动能级跃迁所需要的能量,但又不足以将分子激发到电子能级激发态。这样样品分子吸收光子后到达一种准激发状态,又称为虚能态。样品分子在准激发态时是不稳定的,它将回到电子能级的基态。若分子回到电子

“拉曼散射”是指什么

“拉曼散射”是指一定频率的激光照射到样品表面时,物质中的分子吸收了部分能量,发生不同方式和程度的振动(例如:原子的摆动和扭动,化学键的摆动和振动),然后散射出较低频率的光。频率的变化决定于散射物质的特性,不同原子团振动的方式是惟一的,因此可以产生特定频率的散射光,其光谱就称为“指纹光谱”,可以照此原

拉曼散射光谱简介

一定波长的电磁波作用于被研究物质的分子,引起分子相应能级的跃迁,产生分子吸收光谱。引起分子电子能级跃迁的光谱称电子吸收光谱,其波长位于紫外~可见光区,故称紫外-可见光谱。电子能级跃迁的同时伴有振动能级和转动能级的跃迁。引起分子振动能级跃迁的光谱称振动光谱,振动能级跃迁的同时伴有转动能级的跃迁。拉曼散

“拉曼散射”是指什么

“拉曼散射”是指一定频率的激光照射到样品表面时,物质中的分子吸收了部分能量,发生不同方式和程度的振动(例如:原子的摆动和扭动,化学键的摆动和振动),然后散射出较低频率的光。频率的变化决定于散射物质的特性,不同原子团振动的方式是惟一的,因此可以产生特定频率的散射光,其光谱就称为“指纹光谱”,可以照此原

瑞利散射与拉曼散射的区别

分子的外层电子在辐射能的照射下,吸收能量使电子激发至基态中较高的振动能级,在10-12s左右跃回原能级并产生光辐射,这种发光现象称为瑞利散射.分子的外层电子在辐射能的照射下,吸收能量使电子激发至基态中较高的振动能级,在10-12s左右跃回原能级附近的能级并产生光辐射,这种发光现象称为拉曼散射.两者皆

瑞利散射与拉曼散射的对比介绍

当一束激发光的光子与作为散射中心的分子发生相互作用时,大部分光子仅是改变了方向,发生散射,而光的频率仍与激发光源一致,这种散射称为瑞利散射。但也存在很微量的光子不仅改变了光的传播方向,而且也改变了光波的频率,这种散射称为拉曼散射。其散射光的强度约占总散射光强度的~。拉曼散射的产生原因是光子与分子之间

拉曼散射光谱的特征

a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。 c. 一般情

拉曼散射的基本类型

简述拉曼散射的基本类型:对泵浦光和SRS光高度透明;具有较大的散射界面;能承受较高的入射泵浦强度。高效率的SRS可在很多分子气体系统中产生,受激拉曼可以分别是基于这些分子的振动、振-转或纯转动拉曼跃迁,工作气压通常在几十个大气压以上,以获得较高的增益因子。此外,利用某些金属原子蒸气作为介质,也可以产

拉曼散射的基本类型

简述拉曼散射的基本类型:对泵浦光和SRS光高度透明;具有较大的散射界面;能承受较高的入射泵浦强度。高效率的SRS可在很多分子气体系统中产生,受激拉曼可以分别是基于这些分子的振动、振-转或纯转动拉曼跃迁,工作气压通常在几十个大气压以上,以获得较高的增益因子。此外,利用某些金属原子蒸气作为介质,也可以产

拉曼散射的基本类型

简述拉曼散射的基本类型:对泵浦光和SRS光高度透明;具有较大的散射界面;能承受较高的入射泵浦强度。高效率的SRS可在很多分子气体系统中产生,受激拉曼可以分别是基于这些分子的振动、振-转或纯转动拉曼跃迁,工作气压通常在几十个大气压以上,以获得较高的增益因子。此外,利用某些金属原子蒸气作为介质,也可以产

什么是表面增强拉曼散射

表面增强拉曼散射 (surface enhancement of Raman scattering ),英文简称SERS。1974年M.Fleishmann等人测量到了电化学池中经过几次氧化还原反应的银表面吸附吡啶分子的拉曼散射线。1976年R.P.Vandyne等证实了上述实验并推算出银表面吸附的

拉曼散射现象的发现与研究

1928年C.V.拉曼实验发现,当光穿过透明介质被分子散射的光发生频率变化,这一现象称为拉曼散射,同年稍后在苏联和法国也被观察到。在透明介质的散射光谱中,频率与入射光频率υ0相同的成分称为瑞利散射;频率对称分布在υ0两侧的谱线或谱带υ0±υ1即为拉曼光谱,其中频率较小的成分υ0-υ1又称为斯托克斯线

拉曼散射光谱仪简介

  拉曼光谱仪对于普通人来说还是挺陌生的,一般在科研院所、高等院校物理和化学实验室、生物及医学领域等这类地方比较常见,用于光学方面和研究物质成分的判定与确认;拉曼光谱仪还可以应用于刑侦方面,进行毒品的检测,还可以应用于珠宝行业,进行宝石的鉴定。  该仪器外形构造比较简单,设计更加灵活,操作也很简便,

1928-年2-月:发现拉曼散射

1921 年,印度物理学家拉曼(C.V. Raman)从英国搭船回国,在途中他思考着为什么海洋会是蓝色的问题,而开始了这方面的研究,促成他于 1928 年 2 月发现了新的散射效应,就是现在所知的拉曼效应,在物理和化学方面都很重要。拉曼照片来源:Emilio Segré VisualArchives

扫描拉曼埃分辨显微术:多名学者合作在拉曼领域获进展

  最近,中国科学院院士、中国科学技术大学教授侯建国领衔的单分子科学团队的董振超研究组与罗毅研究组,在单分子拉曼成像领域取得新进展,实现了埃级单化学键分辨的分子内各种振动模式的实空间成像,并提出了一种全新的分子化学结构重构技术——扫描拉曼埃分辨显微术(Scanning Raman Picoscopy

“闪耀”Nature-拉曼显微术突破传统光学成像颜色极限

近年来,显微镜技术在不断地突破自身的局限。来自美国哥伦比亚大学的研究人员报道了一种全新的成像技术:电子预共振受激拉曼散射显微镜(Electronic Pre-Resonance Stimulated Raman Scattering Microscopy)。这一技术结合了拉曼散射光谱窄(

表面增强拉曼散射的研究进展

许丰瑞,刘春霞,马凤国(1 青岛科技大学橡塑材料与工程教育部重点实验室,山东青岛 266042;2 青岛科技大学自动化与电子工程学院,山东青岛 266042)  摘要: 表面增强拉曼散射(SERS)的研究是当下最热门的研究领域之一,在分子检测领域有着重大的应用潜力。该文围绕表面增强拉曼散射及其增强机

激光增强拉曼散射的概念和原理

中文名称激光增强拉曼散射英文名称laser stimulated Raman scattering定  义当激光的频率接近或等于被测分子的电子吸收频率时,某一条或几条特定的拉曼线强度会急剧增强(一般会增强100~1 000 000倍)的散射现象。应用学科生物化学与分子生物学(一级学科),方法与技术(

拉曼散射截面积是什么概念

物理含义就是,在某个频率处拉曼散射的几率,这时光谱学上的概念,由拉曼介质的拉曼散射谱来计算。近似的概念还有:发射截面,吸收界面等等,都是光谱学上的东西。

新型表面增强拉曼散射检测平台问世!

安徽理工大学力学与光电物理学院青年教师蓝雷雷与东南大学物理学院邱腾课题组合作,制备出两种类型的二维碳化钒(V4C3和V2C)MXenes材料,并证明这种材料可以作为性能优异的表面增强拉曼散射(SERS)平台,其中V4C3作为SERS活性材料首次报道。相关研究成果发表于《美国化学会-应用材料与界面》。