锂电池BMS算法设计之SOC估算方法

事实上,各种估算电池SOC 的试验方法,模型和算法已经被提出并且得到开发,每种方法都有他们各自的优缺点。下图是SOC 估算方法的总结,也是本系列文章陆续要讲到的算法(篮字为本期主要讲解的方法)。几种典型的SOC估算方法:在直接测量方法中,估算SOC 使用的是物理测量,比如电池的电压和阻抗。最常用的直接测量方法是:开路电压法、终端电压法、阻抗法和波谱法。开路电压法(Open Circuit Voltage method- OCV)OCV 是电池在空载条件下的热力学势,与电池的SOC 呈现出非线性的关系。OCV 通常是通过在特定环境温度和老化阶段的离线OCV 测试下获取的。尽管OCV 方法比较准确,但是它需要一段静置时间来估算SOC,因此很难在实际的应用中被直接使用(通常与其他算法融合使用)。OCV 在等效电路模型中以理想型可变电压源的形式出现,它的过电压由等效电路中剩余的电阻和电容原件增加。还有就是,电池之间的OCV-SOC 曲线......阅读全文

锂电池BMS算法设计之SOC估算方法

事实上,各种估算电池SOC 的试验方法,模型和算法已经被提出并且得到开发,每种方法都有他们各自的优缺点。下图是SOC 估算方法的总结,也是本系列文章陆续要讲到的算法(篮字为本期主要讲解的方法)。几种典型的SOC估算方法:在直接测量方法中,估算SOC 使用的是物理测量,比如电池的电压和阻抗。最常用的直

锂电池BMS算法设计之电池SOC介绍

电池的SOC通常被定义为当前的容量Q(t)和其标称容量的Qn比率,这也是表明电池中可以存储的最大的电量。公式如下:SOC(t)=Q(t)/Qn精确的SOC 估算能够反映一些重要的信息,比如电池的性能、电池的剩余寿命等,这些信息最终都会导致对电池的功率和能量的有效管理和利用。此外,SOC估算可以用来调

动力锂电池BMS的系统设计介绍

  (1)硬件系统功能安全设计。硬件的详细安全需求来自于TSR,系统架构及系统边界HSI。硬件设计可以硬件功能方块图开始,硬件方块图的所有的元素和内部接口应当展示出来。然后设计和验证详细的电路图,最后通过演绎法(FTA)或者归纳法(FMEA)等方法来验证硬件架构可能出现的故障。对BMS系统来讲,电池

简述锂电池组SOH估算的循环次数折算法

  这是一种根据电池的使用次数来估算电池寿命的方法,该方法将电池的寿命等效成循环使用次数。比如电池单次SOC的变化超过10%,则认为电池的循环次数加1,然后根据电池循环次数与SOH的关系求得电池的SOH。

什么是电池管理系统BMS?电池管理系统BMS有哪些用处?

BMS全称为电池管理系统 (Battery Management System),用于对电池参数进行实时监控、故障诊断、SOC估算、行驶里程估算、短路保护、漏电监测、显示报警,充放电模式选择等。由于电芯是一个电化学的过程,多个电芯组成一个电池,而每个电芯都有特性,无论制造多精密,随这使用时间、环境,

锂电池管理系统BMS的技术特点

BMS全称为电池管理系统 (Battery Management System),用于对电池参数进行实时监控、故障诊断、SOC估算、行驶里程估算、短路保护、漏电监测、显示报警,充放电模式选择等。由于电芯是一个电化学的过程,多个电芯组成一个电池,而每个电芯都有特性,无论制造多精密,随这使用时间、环境,

概述锂电池组SOH估算方法

  估算SOH的方法大致可以分为两类,一类是不基于模型的测量SOH的方法,如放电试验法,循环次数折算法等,一类是基于模型的SOH估计算法,如经验模型法,电阻折算法,阻抗分析法等。其中放电实验法的测量SOH结果最为准确,但是深度放电会对影响电池的寿命;电阻折算法仅将电阻作为评价SOH的依据,但电池老化

关于动力电池与储能电池的区别介绍

  相对于动力锂电池而言,储能锂电池对于使用寿命有更高的要求。新能源汽车的寿命一般在5-8年,而储能项目的寿命一般都希望大于10年。动力锂电池的循环次数寿命在1000-2000次,而储能锂电池的循环次数寿命一般要求能够大于3500次。  在成本方面,动力锂电池面临和传统燃油动力源的竞争,储能锂电池则

东软睿驰新一代智能电池管理系统面世

  近日,东软睿驰发布了新一代智能电池管理系统。该产品的优势在于高安全等级的系统设计、高标准的元器件配备和生产体系,符合国际ISO26262标准,并且拥有SOC/SOE/SOH核心算法。东软睿驰新一代智能电池管理系统是国内首家基于ISO26262严格的概念设计和系统设计要求的电池管理系统产品。  该

东软睿驰新一代智能电池管理系统面世

  近日,东软睿驰发布了新一代智能电池管理系统。该产品的优势在于高安全等级的系统设计、高标准的元器件配备和生产体系,符合国际ISO26262标准,并且拥有SOC/SOE/SOH核心算法。东软睿驰新一代智能电池管理系统是国内首家基于ISO26262严格的概念设计和系统设计要求的电池管理系统产品。该产品

锂电池管理系统BMS介绍

BMS主要用于对电动汽车的动力电池参数进行实时监控、故障诊断、SOC估算、行驶里程估算、短路保护、漏电监测、显示报警,充放电模式选择等,并通过CAN总线的方式与车辆集成控制器或充电机进行信息交互,保障电动汽车高效、可靠、安全运行。实时跟踪电池运行状态及参数检测:实时采集电池充放电状态,采集数据有电池

新能源电动汽车电池管理系统的结构组成

1.1硬件架构BMS硬件包含CPU、电源和采样IC、隔离变压器、CAN模块、EEPROM和RCT等,其核心是CPU。BMS硬件结构如图2所示,集中式、分布式是BMS硬件的拓扑结构。集中式把电子部件归纳在板块内,采样芯片由菊花链接主芯片通信,链路简单,成本低廉,缺点是稳定性不足。分布式由主板、从板组成

新能源电动汽车锂电池管理系统结构介绍

1.1硬件架构BMS硬件包含CPU、电源和采样IC、隔离变压器、CAN模块、EEPROM和RCT等,其核心是CPU。BMS硬件结构如图2所示,集中式、分布式是BMS硬件的拓扑结构。集中式把电子部件归纳在板块内,采样芯片由菊花链接主芯片通信,链路简单,成本低廉,缺点是稳定性不足。分布式由主板、从板组成

新能源电动汽车电池管理系统的结构组成

1.1硬件架构BMS硬件包含CPU、电源和采样IC、隔离变压器、CAN模块、EEPROM和RCT等,其核心是CPU。BMS硬件结构如图2所示,集中式、分布式是BMS硬件的拓扑结构。集中式把电子部件归纳在板块内,采样芯片由菊花链接主芯片通信,链路简单,成本低廉,缺点是稳定性不足。分布式由主板、从板组成

三元锂电池不建议充满的原因分析

  三元锂电池充电到90%或90%以下是最好的,磷酸铁锂电池也是如此,但需要每周至少充满一次来修正SOC值,三元锂电池不建议充满的原因:  1、磷酸铁锂电压较稳定,而三元锂上限电压高,充满时高电压下易导致活性材料的消耗,导致电池衰减,缩短使用寿命;  2、电池是由多个电池单元组成的,具有不一致性,主

锂电池BMS管理系统是什么

  BMS电池管理系统是电池与用户之间的纽带,主要对象是二次电池,作用是提高电池的利用率,防止电池出现过度充电和过度放电,增加电池的使用寿命,监管电池的状态。通俗化的讲,便是一套管理、操控、使用锂电池组的操作系统。BMS行业属于动力锂电池产业链的中游行业。而BMS产业链包括四个环节:中上游原材料、B

锂电池BMS的均衡功能介绍

电芯均衡这个概念相信大家都接触过,主要是因为目前的电芯一致性不够好,需要通过均衡去改善它,类似世界上找不到两片相同的树叶一样,你也找不到两个相同的电芯。所以说到底,均衡是为了解决电芯的缺点,是一种弥补的手段,根本上是电池相关技术(例如成组技术)要发展、突破;而不是总想着在均衡技术上面突破,想着怎么提

概述动力锂电池BMS开发流程

  (1)思考动力锂电池BMS因故障导致功能失效的全部可能性:汇总全部功能和故障,按照运行模式区分,形成危害事件的矩阵。通过危害分析和风险评估,界定危害事件的功能安全目标。合并不同场景下的同一个危害事件的安全等级,用最高的功能安全等级作为该危害事件的安全等级。为了防止危害事件的发生,进而形成安全目标

什么是锂电池管理系统BMS?

BMS全称为电池管理系统 (Battery Management System),用于对电池参数进行实时监控、故障诊断、SOC估算、行驶里程估算、短路保护、漏电监测、显示报警,充放电模式选择等。

锂电池管理系统(BMS)功能浅析

首先纠正关于BMS的定义,在国标QC/T897-2011中是如下描述的:标准中定义BMS包括控制器与采集器,是个电子部件;其中控制器叫做BCU,采集器叫做BE,后者名字虽然比较挫,但血脉正统。然而现实中的叫法就各显神通了,控制器的叫法有BCU、BMU、BMC、BECU等,采集器的叫法有BMU、BIC

智能锂电池包含的功能有哪些?

  1)储能锂电池BMS具有模拟量测量功能:能实时测量单体电压、温度,测量电池组端电压、电流等参数。确保电池安全、可靠、稳定运行,保证单体电池使用寿命要求,满足对单体电池、电池组的运行优化控制要求。  2)储能锂电池BMS具有在线SOC诊断:在实时数据采集的基础上,建立专家数学分析诊断模型,在线测量

改善道路安全性-ADAS-SoC设计准则(一)

  先进驾驶辅助系统(Advanced DriverAssistance Systems,ADAS)是成长最快速的汽车应用。市场研究机构Gartner的报告估计,此市场规模将从2014年的56亿美元成长至2018年的102亿美元,在2013~2018年之间实现17.1%的年复合成长率(C

改善道路安全性-ADAS-SoC设计准则(二)

  ISO 26262功能安全性标准  从汽车产业的角度来看,2011年公布的ISO 26262功能安全性标准是相对最新的标准;该标准将电气和/或电子系统中的功能安全性纳入了路上的车辆,涉及安全性生命周期中的所有活动,例如安全性相关系统的设计与开发,还有被归类为独立安全单元(Safety-Ele

三元锂电池为什么不建议充满?

  1、磷酸铁锂电压较稳定,而三元锂上限电压高,充满时高电压下易导致活性材料的消耗,导致电池衰减,缩短使用寿命;  2、电池是由多个电池单元组成的,具有不一致性,主要原因在于电芯生产和电化学反应都存在不一致性。如果电量充满容易导致某个单元过充,从而影响电池寿命,虽然BMS电池管理系统会有平衡的功能,

三元锂和磷酸铁锂的性能对比

目前新能源汽车中应用最广泛的两种电池材料三元锂和磷酸铁锂,他们因其材料特性差别很大,三元电芯的优点是能量密度高、低温性能好、充放电密度高、电量估算精准,磷酸铁锂电芯的优点是成本低、安全。理论上来讲,按照一定比例把这两种电芯串联放在一起,可以得到各方面性能都相对均衡的电池。并且因为串联的电池系统中有耐

动力锂电池BMS功能需求的考量

  功能安全:不存在由电子电气系统的故障而引起的危害导致不合理的风险。因此,动力锂电池BMS功能安全开发要根据实际产品应用需求做相应功能列表情况,其中首要任务是要防止不可接受的风险。要区分两类故障、错误和失效:随机和系统性失效。系统性失效可以在设计阶段通过合适的方法来防止,而随机性失效只能降低到可接

为什么需要BMS锂电池管理系统

  锂电池因其工作电压高、体积小、重量轻、能量密度大、无记忆效应、无污染、自放电小、循环寿命长等特点,被广泛应用于长时间待机远程监控仪器中。与镍氢电池相比,锂离子电池重量轻30-40%,能量比高60%。但是,锂电池也有严重的缺陷,可以概括为以下两个方面:  1、安全  锂离子电池安全性差,存在爆炸等

简述锂离子电池的荷电状态的概念

  SOC,全称是StateofCharge,荷电状态,也叫剩余电量,代表的是电池放电后剩余容量与其完全充电状态的容量的比值。  其取值范围为0~1,当SOC=0时表示电池放电完全,当SOC=1时表示电池完全充满。电池管理系统(BMS)就是主要通过管理SOC并进行估算来保证电池高效的工作,所以它是电

锂电池BMS的基本功能介绍

  1.确定过流和放电条件  当智能电池处于充放电状态时,检测到的电流超过3A,在0.2s延时后仍大于3A,则判断为过流。此时保护执行电路切断放电保护开关。拆下保护条件是连接充电器。当检测到连接的充电器时,将过流保护移除,否则智能电池将始终处于保护状态。  2.确定过充和释放条件  充电过程中电池电

动力电池与储能电池有什么区别?

在电池使用场景的分类中,电池被人们分为消费电池(3C电池,应用于手机、笔记本电脑、数码相机等)、动力电池(新能源汽车、轻型电动车、电动工具等)、储能电池(电站、通信基站等)。对动力电池而言,它其实也是储能电池的一种。不过,由于受到汽车的体积与重量限制以及启动时的加速等要求,动力电池比普通储能电池有更