锂电池BMS算法设计之SOC估算方法

事实上,各种估算电池SOC 的试验方法,模型和算法已经被提出并且得到开发,每种方法都有他们各自的优缺点。下图是SOC 估算方法的总结,也是本系列文章陆续要讲到的算法(篮字为本期主要讲解的方法)。几种典型的SOC估算方法:在直接测量方法中,估算SOC 使用的是物理测量,比如电池的电压和阻抗。最常用的直接测量方法是:开路电压法、终端电压法、阻抗法和波谱法。开路电压法(Open Circuit Voltage method- OCV)OCV 是电池在空载条件下的热力学势,与电池的SOC 呈现出非线性的关系。OCV 通常是通过在特定环境温度和老化阶段的离线OCV 测试下获取的。尽管OCV 方法比较准确,但是它需要一段静置时间来估算SOC,因此很难在实际的应用中被直接使用(通常与其他算法融合使用)。OCV 在等效电路模型中以理想型可变电压源的形式出现,它的过电压由等效电路中剩余的电阻和电容原件增加。还有就是,电池之间的OCV-SOC 曲线......阅读全文

锂离子电池BMS电池管理系统具有哪些功能?

BMS电池管理系统俗称之为电池保姆或电池管家,主要就是为了智能化管理及维护各个电池单元,防止电池出现过充电和过放电,延长电池的使用寿命,监控电池的状态。BMS管理系统主要由各类传感器、执行器、控制器以及信号线等组成。为了使新能源汽车能够安全的上路行驶,且符合相关标准和规范,BMS管理系统应当具有以下

锂离子电池BMS电池管理系统的功能介绍

BMS电池管理系统俗称之为电池保姆或电池管家,主要就是为了智能化管理及维护各个电池单元,防止电池出现过充电和过放电,延长电池的使用寿命,监控电池的状态。BMS管理系统主要由各类传感器、执行器、控制器以及信号线等组成。为了使新能源汽车能够安全的上路行驶,且符合相关标准和规范,BMS管理系统应当具有以下

锂离子电池BMS电池管理系统具有哪些功能?

BMS电池管理系统俗称之为电池保姆或电池管家,主要就是为了智能化管理及维护各个电池单元,防止电池出现过充电和过放电,延长电池的使用寿命,监控电池的状态。BMS管理系统主要由各类传感器、执行器、控制器以及信号线等组成。为了使新能源汽车能够安全的上路行驶,且符合相关标准和规范,BMS管理系统应当具有以下

挥发分含量的估算方法

一般说来,我们可以利用以下5种方法来获取岩浆中挥发分的含量:①直接测定火成岩的成分,例如对快速淬火的天然火山玻璃进行成分测试;②测定火成岩造岩矿物、特别是斑晶矿物中的熔融包裹体成分;③利用高温高压实验测定熔浆中的挥发分饱和度,给出熔浆挥发分含量的上限;④根据岩石学特征和地质学特征进行推断,例如岩体周

锂电池保护板与电池管理系统BMS的区别

  锂电池保护板与电池管理系统都是对锂电池起保护作用的。它们之间的区别在于:  锂电池保护板是以IC、MOS管和电阻、电容元件组成的,是锂电池的重要元件。电池管理系统可以编辑且自带电池管理软件,相对来说更加智能,等同于锂电池的大脑,起管控作用。  锂电池保护板在3C锂电池和动力电池领域都有着重要的作

锂电池管理系统(BMS)中传感器技术应用

车载蓄电池作为新能源电动汽车的核心,直接关系到车辆寿命、行驶里程、车辆经济性、安全性,这一切又取决于电池管理系统的性能。而电池管理系统监控的准确性、执行动作可靠性则依赖各类传感器,故对于传感器技术的研究与分析尤为必要。一、新能源电动汽车电池管理系统电池管理系统(Battery Management

关于梯次磷酸铁锂电池的功能介绍

  梯次磷酸铁锂电池就是指磷酸铁锂电池的降级使用,主要是针对磷酸铁锂电池组来说的。新的电池组在使用一定时间后会出现衰减,衰减后不足以满足当下设备应用电源的需求。但是电池并不是已经坏了,在对其做一定的修复调整后,可以在用电要求降一级的设备上使用,比如原来的设备用电是200Ah,72V的,但是梯级电池经

实验室设计之污水处理的方法

   污水处理过程中,我们会遇到很多指标性的标示,比如BOD、SS、SV30、活性污泥等,但其中有一个很重要的指标COD,那么COD代表了什么,主要有什么作用那,下面我们大致介绍一下;         COD是一种常用的评价水体污染程度的综合性指标。它是英文chemical oxygen deman

实验室设计之污水处理的方法

实验室设计时污水的处理方法:一般有物理法、化学法、生物法。物理法主要利用物理作用以分离废水中的悬浮物;化学法主要是利用化学反应来处理废水中的溶解物质或胶体物质;生物法的作用是去除废水中的胶体和溶解中的有机物质。上述三种基本处理方法各有其特点和适用条件。在废水排入地面水体中要按排放要求来确定处理程度,

实验室设计之污水处理的方法

实验室设计时污水的处理方法:一般有物理法、化学法、生物法。物理法主要利用物理作用以分离废水中的悬浮物;化学法主要是利用化学反应来处理废水中的溶解物质或胶体物质;生物法的作用是去除废水中的胶体和溶解中的有机物质。上述三种基本处理方法各有其特点和适用条件。在废水排入地面水体中要按排放要求来确定处理程度,

产品设计之接口篇

导语随着科学技术的进步,芯片的集成度越来越高,所以在产品的设计上,能够保证产品本身稳定,抗干扰,防静电等因素,芯片外围的接口设计,也是产品开发过程中一个重要的环节,接下来,本文就针对产品设计过程中常见的几种接口,和大家交流下。电源接口电源接口是电子产品不可缺少的一部分,芯片供电不管是通过外部电池直接

数字地形分析并行算法设计方面取得进展

  数字地形分析算法常具有数据-计算密集型特点,一方面算法步骤常涉及迭代、递归等高复杂度的计算,另一方面其应用经常需面对大区域、高分辨率的大规模栅格数字高程模型(DEM)数据。在这种情况下,传统以串行方式实现的数字地形分析算法以分钟、小时、乃至以天计的运行时间,显然难以满足用户的时间响应需求,因此迫

美用遗传算法逆向设计新型纳米材料

  据物理学家组织网10月29日(北京时间)报道,美国科学家使用遗传算法逆向设计出一种架构,并用这种架构来设计新型纳米材料。这是科学家们首次证明,可用逆向设计方法来设计自组装的纳米结构。另外,该研究也证明了机器学习和“大数据”方法在设计纳米材料方面的潜力。最新研究发表在10月28日出版的美国《国家科

锂电池组SOH估算的阻抗分析法介绍

  阻抗分析法是当今最前沿的SOH测量方法。Feder和Hlavac提出了采用单一频率的交流信号来测量电池的SOH,但是这种方法仅在SOH值较低时精度较好。随后Champlin提出了DFIS(离散频率导抗谱)技术,这个方法是对电池输入不同频率的信号,对采集到的数据进行分析来估算电池参数。

天津大学团队Chem-Soc-Rev:偶氮基光热能的设计性能和应用

  近日,天津大学材料学院封伟教授团队在英国皇家化学学会综述类旗舰刊物Chemical Society Reviews(IF = 40.182)上发表题为“Azobenzene-based solar thermal fuels: design, properties, and applicatio

SOC培养基配制

成分、方法同SOB培养基的配制,只是在培养基冷却到室温后,除了在每100ml的小份中加1ml灭过菌的1mol/L氯化镁外,再加2ml灭菌的1mol/L葡萄糖(18g葡萄糖溶于足够水中,再用水补足到100ml,用0.22um的滤膜过滤除菌)。

PCR实验技术指南之引物设计

PCR实验技术指南之引物设计        所谓“工欲善其事,必先利其器”,这年头手工设计引物的人似乎不多,还是用软件方便些,防止你一不小心看走眼,丢一个碱基,同时计算起来也方便。设计软件有很多,既可以在线设计,也可以用Primer、Oligo等等。细心地进行引物设计是PCR 中zui重要的一步。理

中国科大设计高效蛋白质口袋生成算法

近日,中国科学技术大学认知智能全国重点实验室刘淇教授指导博士生张载熙和哈佛大学医学院Marinka Zitnik教授课题组合作,设计了一种基于图表示学习和蛋白质语言模型的深度生成算法PocketGen,生成与小分子结合的蛋白质口袋序列和空间结构。实验验证表明,PocketGen在生成成功率和效率方面

分析测试的总误差及其估算方法

A.Primer研究指出:紫外可见分光光度计的分析总误差为杂散光引起的误差和噪声引起的误差之和。我们的长期实践表明,紫外可见分光光度计分析测试的总误差不单是由杂散光引起的误差、噪声(含基线平直度)引起的误差组成;还有光谱带宽引起的误差、试样配制和操作引起的误差等多种误差。紫外可见分光光度计分析测试的

分析测试的总误差及其估算方法

A .Primer 研究指出: 紫外可见分光光度计的分析总误差为杂散光引起的误差和噪声引起的误差之和。总误差与吸光度误差的理论值关系如图4-15所示。    图4-15 中, 杂散光引起的误差随着吸光度值的增大, 吸光度误差也增大(负方向) 。吸光度值到达1Ab s 时, 吸光度误差明显向负方向

SEH-|-浙江大学罗忠奎课题组:利用可见近红外光谱估算全剖面土壤有机碳及其组分研究

  浙江大学罗忠奎课题组在Soil & Environmental Health(SEH,《土壤与环境健康》)期刊发表题为“使用可见-近红外光谱技术估算土壤全剖面有机碳及其组分(Using visible-near infrared spectroscopy to estimate whole-pr

失血量估算

 失血量的估计对进一步处理极为重要。一般每日出血量在5ml以上,大便色不变,但匿血试验就可以为阳性,50~100ml以上出现黑粪。以呕血、便血的数量作为估计失血量的资料,往往不太精确。因为呕血与便血常分别混有胃内容与粪便,另一方面部分血液尚贮留在胃肠道内,仍未排出体外。因此可以根据血容量减少导致周围

铁电随机存储器FRAM在动力电池管理上的应用

电池管理系统(Battery Management System, 即BMS)主要实现三大核心功能:电池充放电状态的预测和计算(即SOC)、单体电池的均衡管理,以及电池健康状态日志记录与诊断。功能框图如下:在整个电池管理系统中,电池荷电状态的预测和计算(即SOC)是其最重要的功能,因为有了精确的电池

基于酶工作原理,新算法设计出高效合成酶

以色列魏茨曼科学研究院科学家在新一期《自然》杂志发表文章称:他们利用基于酶工作原理的计算机新算法设计出高效人工合成酶。这种新型酶不仅能催化天然蛋白质无法完成的化学反应,其效率更达到人工智能(AI)设计酶的100倍,标志着“按需定制”高效酶的新阶段即将来临。通过算法设计的一种酶(白色)将底物(红色、黄

电源设计经验之MOS管驱动电路

在使用MOSFET设计开关电源时,大部分人都会考虑MOSFET的导通电阻、最大电压、最大电流。但很多时候也仅仅考虑了这些因素,这样的电路也许可以正常工作,但并不是一个好的设计方案。更细致的,MOSFET还应考虑本身寄生的参数。对一个确定的MOSFET,其驱动电路,驱动脚输出的峰值电流,上升速

什么是BMS系统?

新能源汽车俗称的三大件分别为电池、电机、电控。其中,电控主要是指电池管理系统,也称之为BMS。

概述锂电池的设计规范

  由于全球手机有数亿只,要达到安全,安全防护的失败率必须低于一亿分之一。由于,电路板的故障率 一般都远高于一亿分之一。因此,电池系统设计时,必须有两道以上的安全防线。常见的错误设计是用充电器(adaptor)直接去充电池组。这样将过充的防护重任,完全交给电池组上的保护板。虽然保护板的故障率不高,但

新能源汽车电池管理系统(BMS)中传感器技术应用

车载蓄电池作为新能源电动汽车的核心,直接关系到车辆寿命、行驶里程、车辆经济性、安全性,这一切又取决于电池管理系统的性能。而电池管理系统监控的准确性、执行动作可靠性则依赖各类传感器,故对于传感器技术的研究与分析尤为必要。一、新能源电动汽车电池管理系统电池管理系统(Battery Management

美国首次确定神经科学算法有助设计高效稳定网络

  大脑可能是最高效稳定的网络。最近,美国卡内基梅隆大学和索尔克生物研究所合作,首次确定了大脑在早期发育阶段剪除不需要的神经元连接的速度,籍此开发出一种可用于网络设计的“大脑剪除”新算法。模拟分析表明,据新算法生成的网络比用目前工程方法生成的网络更加高效稳定。相关论文发表在近期《公共科学图书馆·计算

用AI预测和设计材料特性,新算法已显示巨大潜力

  来自新加坡南洋理工大学、美国麻省理工学院和俄罗斯斯科尔科沃理工学院的研究人员相互合作,开发了一种机器学习算法,这种算法可以预测材料应变时性能的变化。  这项工作可能会为工程新材料带来极大的潜力,新材料可能会因此具有量身定制的特性,在通信、信息处理和能源领域拥有广阔前景。  这篇论文发表在 Pro