突破手性结构的极限

密歇根大学领导的一个研究小组已经证明,由纳米粒子自我组装的微米级"领结"可以形成一系列精确控制的卷曲形状。这一进展为简单地创造与扭曲的光线相互作用的材料铺平了道路,从而带来在机器视觉和药品生产方面的新应用。 虽然生物学中充满了像DNA这样的扭曲结构,被称为手性结构,但扭曲的程度是被锁定的--试图改变它就会破坏结构。现在,研究人员可以对扭曲的程度进行设计。 这种材料可以使机器人准确地浏览复杂的人类环境。扭曲的结构将在从表面反射的光波的形状中编码信息,而不是在构成大多数人类阅读标志的二维符号排列中编码。这将利用人类几乎无法感知的光的一个方面,即所谓的偏振。扭曲的纳米结构会优先反射某些类型的圆偏振光,这种形状的光在空间中移动时会发生扭曲。 彩色电子显微镜图像中带有糖果包装纸扭曲的微米级蝴蝶结。控制卷曲的纳米结构材料的扭曲程度的能力可能是化学和机器视觉中的一个有用的新工具。 "这基本上就像甲壳类......阅读全文

苏州纳米构建金纳米棒@金纳米粒子手性螺旋超结构

  等离子体纳米粒子及其组装结构因为优异的光学特性在纳米科技中具有广泛应用,如超材料、生物传感器、光电器件等。精准构建等离子体纳米结构对于光学特性的深入研究意义重大,而精确调控等离子体纳米粒子的表面功能性质则是进一步获得复杂自组装体系的关键。目前借助各种物理和化学方法,可在纳米粒子表面的一定区域范围

纳米天线首次实现可见光波段内通讯

  美国波士顿大学科学家首次开发出能在可见光波段内操作的纳米无线光学通讯系统,更短波长的可见光将大大缩小计算机芯片的尺寸。新系统的核心技术是一种纳米天线,能让光子成群移动并高精控制光子与表面等离子体间的相互转换。相关论文发表在《自然—科学报告》上。  据IEEE《光谱学》杂志网站报道,此前沿单一通道

纳米相机可在小于光波波长的距离内进行拍摄

  伊利诺伊大学香槟分校的研究人员已经发现了一种新型金原子阵列具有领结支柱结构的纳米晶须,能够像传统胶片一样用来记录远小于光波波长的光线(例如小于红光波段的600纳米)。鉴于这种具有领结支柱结构的纳米晶须也具有类似于胶卷的功能,标准的光学显微镜就可充当一种纳米相机。  “不像传统的胶片那样,它的读写

物理所金属纳米线集成纳米光学芯片的原理研究获新进展

  金属纳米结构中的表面等离激元具有许多奇特的光学性质,如光场局域效应、透射增强、共振频率对周围环境敏感等,因而被广泛应用于纳米集成光学器件、癌症热疗、光学传感、增强光催化、太阳能电池以及表面增强拉曼光谱等。其中,利用表面等离激元设计与制作亚波长光学器件是一个崭新而迅速发展的研究方向

安徽大学手性配体直接合成手性Au38纳米团簇研究取得进展

  我们的左右手具有巧妙绝伦的对称之美,然而,能使自已的左右手重合吗?不可能!这就是手性。大至星系旋臂、行星自转、大气气旋,小到矿物晶体、有机分子,从无生命的物体,到生命现象,无处没有手性的倩影。手性是自然界的基本属性。近年来,人们对单一手性化合物及手性功能材料的需求推动了手性科学的蓬勃发展,手性金

研究人员研发出新型手性无机纳米材料

  手性材料在推动生物标记、手性分析和检测、对映异构体选择性分离、偏振相关光子学和光电子学应用等领域的发展具有重要意义。目前,传统手性纳米材料主要是通过引入手性配体或构造螺旋结构等电偶极矩调控方式构筑,但这类手性材料在环境稳定性和导电性方面通常存在局限性,极大地限制了其实际应用。探索新的调控机制并构

英国研究人员模拟手性纳米结构转换新过程

  英国研究人员已经模拟了手性分子在从左手性向右手性状态转换或者相反过程中,光与手性分子之间的相互作用。了解这些过渡形式的行为可能会帮助研究人员改进电子通信组件的设计。研究人员以前只能研究左手或右手性分子形式,但两者之间没有任何联系。改变分子的手性的能力将使研究人员能够观察到这种变化的影响如何转化为

国家纳米中心用DNA折纸术组装纳米颗粒三维手性螺旋结构

  如何能在纳米尺度上对材料结构进行精确的控制,形成具有特殊性能的聚集体,是当今科学界最具有挑战性的前沿课题之一。近年发展起来的DNA折纸术是一种独特的自下而上的自组装纳米技术,被用于制备多种尺寸、形貌的二维和三维纳米图案。DNA折纸纳米结构由于结构可设计性和空间

苏州纳米所单手性碳纳米管高纯度分离技术研究获进展

  单手性碳纳米管是一种颇具前途的电子和光电子材料,具有确定的能带结构和近红外吸收发射特性,在碳基集成电路、红外光探测器与量子光源等方面有广泛的应用前景,有望成为下一代碳基电子的核心材料。已有较多方法(如梯度密度离心法、凝胶色谱法、双水相法)可分离得到多种单手性碳管,但这些单手性碳管的直径基本在1.

DNA自组装手性等离子体纳米结构方面取得进展

  自然界中的手性现象广泛存在,诸如DNA和蛋白质等在分子水平的手性现象已经被人们所熟知。近年来,具有在可见光波段手性光学响应特性的等离子体金属纳米结构吸引了越来越多的关注。对手性等离子体纳米结构的制造与光学活性研究,催生了手性等离子光学新兴研究领域。虽然大量研究报道利用各向同性金属纳米基元组装手性

聚集可调双发射手性碳纳米环研发成功

  中国科学技术大学杜平武教授课题组与杨上峰教授课题组合作,合成了首个具有聚集可调双发射性质的手性双环分子。研究成果近日发表于《自然-通讯》。  “这种新型手性分子在聚集态和溶液态可以发射不同波长的荧光,通过控制聚集程度,调节两个发射峰的比例,获得多种颜色的荧光发射。”化学与材料科学学院材料科学与工

大连化物所研究发现碳纳米管内手性催化加速现象

  日前,中科院大连化学物理研究所李灿院士领导的研究团队将手性修饰的Pt纳米催化剂粒子装入碳纳米管内,发现碳纳米管显著加速手性催化的现象。  手性催化(也称不对称催化)是当今化学领域的前沿研究方向,是合成手性药物中间体的重要技术。近年来,手性药物工业的迅速发展使手性化合物的合成更加受

Science:磁场调控手性磁性纳米颗粒和凝胶的光学活性

  密歇根大学Nicholas A. Kotov和巴西Federal University of São Carlos大学André F. de Moura(共同通讯作者)等人合成了具有L-和D-半胱氨酸表面键的顺磁性Co3O4纳米颗粒,这些键赋予了晶体晶格的手性转变,而这种各向异性使得材料的手性光

物理所首次发现保偏等离激元纳米光波导和纳米光子路由器

  中科院物理研究所/北京凝聚态物理国家实验室(筹)徐红星研究员领导的研究小组一直致力于等离激元光子学(Plasmonics)这一新兴领域的研究。他们在纳米光传导和单分子远程探测【Nano Lett. 9, 2049 ,(2009)】、纳米光电集成基础的光-激子转

近锯齿型单一手性碳纳米管宏量分离研究获进展

  单一手性碳纳米管的规模化制备是揭示碳纳米管新奇物理特性,发展其应用的前提和基础,被认为是碳纳米管研究领域的“圣杯”。然而,如何精确识别和筛选原子尺度结构上具有微小差异的不同手性碳纳米管,实现单一手性碳纳米管的宏量制备是世界性的难题。中国科学院物理研究所/北京凝聚态物理国家研究中心先进材料与结构分

中国学者首次合成螺旋手性碳纳米管片段

   记者从中国科学技术大学获悉,该校杜平武教授课题组首次合成了螺旋手性碳纳米管片段,并对其强圆偏振发光性质进行了深入研究,该成果日前发表在国际著名学术期刊《德国应用化学》上。  由于其突出的机械、电学以及光学性质, 碳纳米管材料在纳米科技和电子学领域中扮演着非常重要的角色。然而,传统的制备方法难以

如何选择激发光波长和发射光波长

严格的说你的这个问题不是三言两语能讲清楚的,最好参考有关书籍,如近期出版的【荧光分析法】一书。同时也不知你使用的是何种型号的仪器,只能简单的略说一二:(1)如果你的仪器有三维扫描功能,那就非常简单了,按照说明书要求去做就可以了。(2)如果仪器没有上述功能,一般可将仪器的激发波长(EX)先设定为200

如何选择激发光波长和发射光波长

严格的说你的这个问题不是三言两语能讲清楚的,最好参考有关书籍,如近期出版的【荧光分析法】一书。同时也不知你使用的是何种型号的仪器,只能简单的略说一二:(1)如果你的仪器有三维扫描功能,那就非常简单了,按照说明书要求去做就可以了。(2)如果仪器没有上述功能,一般可将仪器的激发波长(EX)先设定为200

如何选择激发光波长和发射光波长

严格的说你的这个问题不是三言两语能讲清楚的,最好参考有关书籍,如近期出版的【荧光分析法】一书。同时也不知你使用的是何种型号的仪器,只能简单的略说一二:(1)如果你的仪器有三维扫描功能,那就非常简单了,按照说明书要求去做就可以了。(2)如果仪器没有上述功能,一般可将仪器的激发波长(EX)先设定为200

如何选择激发光波长和发射光波长

严格的说你的这个问题不是三言两语能讲清楚的,最好参考有关书籍,如近期出版的【荧光分析法】一书。同时也不知你使用的是何种型号的仪器,只能简单的略说一二:(1)如果你的仪器有三维扫描功能,那就非常简单了,按照说明书要求去做就可以了。(2)如果仪器没有上述功能,一般可将仪器的激发波长(EX)先设定为200

如何选择激发光波长和发射光波长

激发光波长:在效果相同的情况下,光源容易得到。发射光波长:在效果相同的情况下,波长容易检测得到。如果仪器没有上述功能,一般可将仪器的激发波长(EX)先设定为200nm,然后进行发射波长(EM)模式扫描,(EM)波长范围暂设定为210-800nm,然后记录所有出现的峰值波长;改变激发波长(EX)后再扫

如何选择激发光波长和发射光波长

(1)如果你的仪器有三维扫描功能,那就非常简单了,按照说明书要求去做就可以了。(2)如果仪器没有上述功能,一般可将仪器的激发波长(EX)先设定为200nm,然后进行发射波长(EM)模式扫描,(EM)波长范围暂设定为210-800nm,然后记录所有出现的峰值波长;改变激发波长(EX)后再扫描,如第二次

新发现!手性纳米粒子可以对DNA选择性剪切

  在国家自然科学基金项目(项目编号:21522102,21631005)等资助下,江南大学匡华教授研究团队率先发现手性纳米粒子的DNA特异性剪切效应,并实现细胞与活体内靶标DNA的精确剪切。相关成果以“Site-Selective Photoinduced Cleavage and Profili

激光波长测量

激光波长测量 概要    AvaSpec-3648高分辨率光谱仪非常适合测量连续和脉冲激光的波长和相对强度,而且由于探测器具有10微秒电子快门功能,因此动态范围非常大。对于高功率激光,可选用积分球或余 弦校正器来衰减入射光,以避免CCD探测器饱和。 光谱仪     AvaSpec-3648高分辨率光

利用光波干涉原理

利用光波干涉原理,在镜片的表面镀上一层薄膜,厚度为1/4 波长的光学厚度,使光线不再只被玻璃─空气界面反射,而是空气─薄膜、薄膜─玻璃二个界面反射,因此产生干涉现象,可使反射光减少。若镀二层的抗反射膜,使反射率更低,但是镀一层或二层都有缺点:低反射率的波带不移宽,不能在可见光范围都达到低反射率。19

什么是光压与光波

光压我们知道书本放在桌子上,会对桌子产生压力;密集的雨点打在伞面上,雨水也会对伞面产生压力。然而你知道光照射到物体表面也会对物体的表面产生压力吗?远在1748年,欧拉就已指出光压的存在。而在1873年,英国物理学家麦克斯韦也预言了光压的存在,并指出光照射到物体上,使物体受到的压力大小决定于光在单位长

可见光波段

颜色是当可见光波段的光进入人眼后的直觉反映,主要波长段涵盖了380~780nm。那狗狗能看到颜色吗?当然,但是不是人类所反映的颜色,那是因为人类与动物的感官神经不一样。视锥细胞不能直接探测到颜色,只能反映他们所吸收到的能量。单独的视锥细胞只能告诉我们两个不同的物体反射的光是否有相同强度,但是不能告诉

我国在大直径半导体碳纳米管手性结构实现宏量分离

  从概念上讲,碳纳米管是由石墨烯卷曲形成的一维管状分子,它不仅具有石墨烯优异的力学、热学性能以及极高的载流子迁移率等特点,而且具有结构可调的能隙结构,表现出优异的电子以及光电子特性,是制备高速、低功耗、高集成度电子和光电子集成回路的理想材料。相对于传统的Si基半导体器件,碳纳米管电子器件的能效能够

共振瑞利散射光谱在纳米检测、手性分析等领域前景光明

  “七彩光谱 万象更新”主题,访重庆三峡学院杨季冬教授  光谱技术已迈过百年历史长河,中国的光谱分析技术亦可追溯到上个世纪50年代,今日中国的光谱技术已从国际上“跟跑”跃升到部分领域领跑的地位。在这背后,老中青科学家,克服了严峻的挑战、付出了辛勤的汗水。伴随着将在成都召开的第21届全国分子光谱学学

手性传感器识别法鉴别手性分子

手性传感器识别法具有简单快捷、高效灵敏和选择性高的特点。电化学传感器主要通过主体选择性键合客体分子引起传感器的电信号变化而实现手性识别;荧光传感器基于对映体分子和手性选择剂形成缔合物的荧光差异来实现识别。在压电传感器中,手性选择膜镀在石英晶体上,当手性分子与手性膜发生作用时,会引起石英晶体的质量和振