简述缺氧诱导因子的分子基础
HIF-1是一种异源二聚体,主要由120kD的HIF-1α和91~94kD的HIF-1β两个亚单位组成。HIF-1β亚基又称芳香烃受体核转运子(aryl hydrocarbon re-eptor nuclear translocator,ARNT),基因定位于人的1号染色体q21区,在细胞内稳定表达,起结构性作用;HIF-1α基因定位于人的14号染色体q21~24区,受缺氧信号的调控,是HIF-1的活性亚基。每个亚单位的氨基端均含有碱性的螺旋-环-螺旋(basic-he-lix-loop-helix,bHLH)构型和Per/Amt/Sim(PAS)结构,是其形成异源二聚体并与DNA结合所必需的结构。作为活性亚基的HIF-1α,由826个氨基酸构成,其两个末端是感受缺氧信号的活性调控区域,C末端有一个富含脯氨酸-丝氨酸-苏氨酸(Pro/Ser/Thr)的氧依赖降解结构域(oxygen-dependent degradation......阅读全文
简述缺氧诱导因子的分子基础
HIF-1是一种异源二聚体,主要由120kD的HIF-1α和91~94kD的HIF-1β两个亚单位组成。HIF-1β亚基又称芳香烃受体核转运子(aryl hydrocarbon re-eptor nuclear translocator,ARNT),基因定位于人的1号染色体q21区,在细胞内稳定
缺氧诱导因子1-的分子基础
HIF-1是一种异源二聚体,主要由120kD的HIF-1α和91~94kD的HIF-1β两个亚单位组成。HIF-1β亚基又称芳香烃受体核转运子(aryl hydrocarbon re-eptor nuclear translocator,ARNT),基因定位于人的1号染色体q21区,在细胞内稳定表达
简述缺氧诱导因子的作用
在细胞中,HIF信号级联反应会受到缺氧状态的影响。在缺氧状态下,通常会让细胞持续的细胞分化。然而,缺氧状态促进了血管新生,对于胚胎中的血管系统与癌症肿瘤来说非常重要。 伤口处的缺氧状态,也促进了角质细胞的移动与上皮组织的修护。 在普遍情况下,HIF是发育的重要关键。在哺乳动物中,若缺少了H
遗传变异的分子基础
遗传从现象来看是亲子代之间的相似的现象,即俗语所说的“种瓜得瓜,种豆得豆”。它的实质是生物按照亲代的发育途径和方式,从环境中获取物质,产生和亲代相似的复本。遗传是相对稳定的,生物不轻易改变从亲代继承的发育途径和方式。因此,亲代的外貌、以及优良性状很有可能在子代重现,甚至酷似亲代。而亲代的缺陷和遗传病
ABO血型系统的分子基础介绍
血型实质上是不同的红细胞表面抗原。红细胞质膜上的鞘糖脂是AB0血型系统的血型抗原,血型免疫活性特异性的分子基础是糖链的糖基组成。1960年,瓦特金斯(A. Watkins)确定了ABO抗原是糖类,并测定了其结构。A、B、O三种血型抗原的糖链结构基本相同,只是糖链末端的糖基有所不同。A型血的糖链末
缺氧诱导因子1-的应用特点
HIF-1是具有转录活性的核蛋白,具有相当广泛的靶基因谱,其中包括与缺氧适应、炎症发展及肿瘤生长等相关的近100种靶基因。当其与靶基因结合后,通过转录和转录后调控使机体产生一系列反应,有些反应尽管带有适应代偿性质,但也常给机体带来病理性损害,如低氧性肺动脉高压( hypoxic pulmonary
缺氧诱导因子1-的功能作用
在细胞中,HIF信号级联反应会受到缺氧状态的影响。在缺氧状态下,通常会让细胞持续的细胞分化。然而,缺氧状态促进了血管新生,对于胚胎中的血管系统与癌症肿瘤来说非常重要。 伤口处的缺氧状态,也促进了角质细胞的移动与上皮组织的修护。在普遍情况下,HIF是发育的重要关键。在哺乳动物中,若缺少了HIF-1的基
关于缺氧诱导因子的实质介绍
HIF-1是具有转录活性的核蛋白,具有相当广泛的靶基因谱,其中包括与缺氧适应、炎症发展及肿瘤生长等相关的近100种靶基因[3,4]。当其与靶基因结合后,通过转录和转录后调控使机体产生一系列反应,有些反应尽管带有适应代偿性质,但也常给机体带来病理性损害,如低氧性肺动脉高压( hypoxic pul
缺氧诱导因子1-的结构特点
缺氧大部分需要氧气呼吸的物种,都拥有保守序列HIF-1。其转录都有严格的调控机制。HIF-1是由一个α亚基和一个β亚基组成的异源蛋白二聚体,而β亚基是一种芳基烃受体核转位(ARNT)。 HIF-1属于碱性螺旋-环-螺旋(bHLH)家族中的PER-ARNT-SIM(PAS)亚科。 α亚基和β亚基的结构
关于缺氧诱导因子的基本介绍
缺氧诱导因子-1 ,即低氧诱导因子-1(hypoxia inducible factor-1,HIF-1)是1992年Semenza和Wang首先发现的,随后确立了HIF-1的结构,并证明了其cDNA的编码顺序。HIF-1普遍存在于人和哺乳动物细胞内,常氧下(21%O2)也有表达,但合成的HIF
关于缺氧诱导因子的机制介绍
HIF中α亚基上的脯氨酸残基会透过HIF脯氨酰羟化酶羟基化,而使其能被 VHL E3泛素连接酶辨识并泛素化,之后透过蛋白酶体使其被快速降解。这只会发生在含氧量正常的条件。但在缺氧条件下,HIF脯氨酰羟化酶会被抑制,因为它利用氧作为辅助基质。 在琥珀酸去氢酶复合物中,电子转移的抑制是因为SD
关于缺氧诱导因子的代谢调节
HIF一1β亚基在细胞浆中稳定表达,而HIF一1α亚基在翻译后即被泛素一蛋白酶水解复合体降解。因此,在正常氧饱和度下的细胞中基本检测不到HIF一1α亚基的表达,而在缺氧状态下, HIF一1α亚基的降解被抑制,1α和β亚基形成有活性的HIF一1,转移到细胞核内调节多种基因的转录。 HIF一1调节
缺氧诱导因子1-的作用机制
HIF中α亚基上的脯氨酸残基会透过HIF脯氨酰羟化酶羟基化,而使其能被 VHL E3泛素连接酶辨识并泛素化,之后透过蛋白酶体使其被快速降解。这只会发生在含氧量正常的条件。但在缺氧条件下,HIF脯氨酰羟化酶会被抑制,因为它利用氧作为辅助基质。在琥珀酸去氢酶复合物中,电子转移的抑制是因为SDHB或SDH
细胞化学基础分子取向力
取向力(orientation force 也称dipole-dipole force)取向力发生在极性分子与极性分子之间。由于极性分子的电性分布不均匀,一端带正电,一端带负电,形成偶极。因此,当两个极性分子相互接近时,由于它们偶极的同极相斥,异极相吸,两个分子必将发生相对转动。这种偶极子的互相转动
细胞化学基础分子色散力
色散力(dispersion force 也称“伦敦力”)所有分子或原子间都存在。是分子的瞬时偶极间的作用力,即由于电子的运动,瞬间电子的位置对原子核是不对称的,也就是说正电荷重心和负电荷重心发生瞬时的不重合,从而产生瞬时偶极。色散力和相互作用分子的变形性有关,变形性越大(一般分子量愈大,变形性愈大
细胞化学基础分子诱导力
诱导力(induction force)在极性分子和非极性分子之间以及极性分子和极性分子之间都存在诱导力。由于极性分子偶极所产生的电场对非极性分子发生影响,使非极性分子电子云变形(即电子云被吸向极性分子偶极的正电的一极),结果使非极性分子的电子云与原子核发生相对位移,本来非极性分子中的正、负电荷重心
关于ABO血型系统的分子基础介绍
血型实质上是不同的红细胞表面抗原。红细胞质膜上的鞘糖脂是AB0血型系统的血型抗原,血型免疫活性特异性的分子基础是糖链的糖基组成。1960年,瓦特金斯(A. Watkins)确定了ABO抗原是糖类,并测定了其结构。A、B、O三种血型抗原的糖链结构基本相同,只是糖链末端的糖基有所不同。A型血的糖链末
缺氧诱导因子1-的结构功能特点
缺氧诱导因子-1 ,即低氧诱导因子-1(hypoxia inducible factor-1,HIF-1)是1992年Semenza和Wang首先发现的,随后确立了HIF-1的结构,并证明了其cDNA的编码顺序。HIF-1普遍存在于人和哺乳动物细胞内,常氧下(21%O2)也有表达,但合成的HIF-1
简述分子伴侣的特征
从参与促进一个反应而本身不在最终产物中出现这一点来看,分子伴侣具有酶的特征。但从以下三方面来看,分子伴侣和酶很不同。 1、分子伴侣对靶蛋白没有高度专一性,同一分子伴侣可以促进多种氨基酸序列完全不同的多肽链折叠成为空间结构、性质和功能都不相关的蛋白质。 2、它的催化效率很低。行使功能需要水解A
高分子的理论基础和研究
在测定分子量和分子量分布的实验方法中,超速离心沉降(1923年始用)、光散射(1944年始用)、凝胶渗透色谱(1964年始用)都曾起过重要的作用。高分子在理论方面,1930年W.库恩发展了高分子链的统计理论;1934年库恩、E.古思、H.F.马克各自提出了柔性链高分子形态的无规行走模型,形成了高分子
缺氧诱导因子1-的代谢调节作用
HIF一1β亚基在细胞浆中稳定表达,而HIF一1α亚基在翻译后即被泛素一蛋白酶水解复合体降解。因此,在正常氧饱和度下的细胞中基本检测不到HIF一1α亚基的表达,而在缺氧状态下, HIF一1α亚基的降解被抑制,1α和β亚基形成有活性的HIF一1,转移到细胞核内调节多种基因的转录。HIF一1调节的靶基因
细胞化学基础腺苷分子结构数据
摩尔折射率:59.95摩尔体积(cm3/mol):128.1等张比容(90.2K):412.8表面张力(dyne/cm):107.6极化率(10-24cm3):23.76
分子遗传学词汇基础转录
中文名称:基础转录英文名称:basal transcription定 义:由通用转录因子与TATA框结合而起始的转录作用。应用学科:遗传学(一级学科),分子遗传学(二级学科)
细胞化学基础鸟嘌呤分子结构
鸟嘌呤是嘌呤类有机化合物,是由一个嘧啶环和一个咪唑环稠和而成的,是嘌呤的一种,由碳和氮原子组成具有特征性双环结构,并与胞嘧啶以三个氢键相连。在生物体内起着重要的作用,鸟嘌呤不仅自身可以有多种异构体,还具有4种DNA碱基中最小的绝热电离势,以游离或结合态存在于海鸟粪中,是五种不同核碱中的其中之一,并同
简述暴发性肝衰竭的基础治疗
暴发性肝衰竭患者应保证有足够的能量摄入,保证每天热量摄入达到2000kcal以上,以减少体内的蛋白分解,每天应静滴10%葡萄糖1500~2000ml,适量应用脂肪乳可以改善患者的负氮平衡,但输入时应慢,可用10%脂肪乳500ml在不短于4h的时间内滴入,酌情每天或2~3天输注新鲜血浆、人血白蛋白
简述乙肝表面抗体阳性的基础概述
乙肝表面抗体阳性的基本概述: 乙肝表面抗体详解:乙肝表面抗体是人体的保护性的抗体,主要是乙肝病毒表面抗原刺激人体免疫系统而产生的抗体。它的出现,能中和掉人体内的乙肝病毒。具有保护人体的作用。其英文简写为HBsAb。 很多人都只知道乙肝五项检查中出现“+”不好,因而也会误认为乙肝表面抗体出现阳
简述DNA分子杂交的意义
分类学上不同物种的DNA分子之间可以进行分子杂交,但是,远缘物种的DNA分子之间进行杂交分子的可能性远比近缘物种的要小得多。例如,细菌与真核细胞DNA分子之间形成杂交分子的可能性很小;不同细菌的 DNA分子之间杂交时,能形成某些互补片段;人的DNA分子与小鼠的 DNA分子之间杂交时,只有少量的人
简述DNA分子杂交的意义
分类学上不同物种的DNA分子之间可以进行分子杂交,但是,远缘物种的DNA分子之间进行杂交分子的可能性远比近缘物种的要小得多。例如,细菌与真核细胞DNA分子之间形成杂交分子的可能性很小;不同细菌的 DNA分子之间杂交时,能形成某些互补片段;人的DNA分子与小鼠的 DNA分子之间杂交时,只有少量的人
简述MHCII类分子的功能
II类分子的功能主要是在免疫应答的始动阶段将经过处理的抗原片段递呈给cd4t细胞。正如cd8t细胞只能识别与mhc I类分子结合的抗原片段一样,cd4t细胞只能识别II类分子结合的抗原片段。II类分子主要参与外源性抗原的递呈,在一些条件下也可递内源性抗原。在组织或器官移植过程中,II类分子是引起
简述DNA分子杂交的意义
分类学上不同物种的DNA分子之间可以进行分子杂交,但是,远缘物种的DNA分子之间进行杂交分子的可能性远比近缘物种的要小得多。例如,细菌与真核细胞DNA分子之间形成杂交分子的可能性很小;不同细菌的 DNA分子之间杂交时,能形成某些互补片段;人的DNA分子与小鼠的 DNA分子之间杂交时,只有少量的人