Antpedia LOGO WIKI资讯

突触发育也有昼夜节律性

日出而作,日落而息。在人类行为的背后,是生物钟的调控。发育或许也是如此。日前,我国科学家以经典的视网膜-视顶盖突触为模型,运用在体双光子长时程成像,发现了发育早期突触形成速率存在昼夜节律性,为生物钟参与调节动物发育过程奠定了重要理论基础,为认识神经环路连接建立的发育规律提供了重要实验依据。 该研究由中国科学院脑科学与智能技术卓越创新中心、神经科学国家重点实验室杜久林研究组完成,论文6月2日在线发表于国际学术期刊《自然-通讯》上。 昼夜节律是生物体的一种计时现象,通常受到外界环境因素(如光照和温度)的影响,并以24小时为周期进行振荡。在生理条件下,生物钟协调着神经、内分泌、心血管、免疫、代谢以及较多其他生物系统的功能。然而,除了在诸如斑马鱼幼鱼的细胞周期、果蝇的羽化以及哺乳动物肾脏器官形成中有少量报道外,关于生物钟是否以及如何调节生物体早期发育过程的认识相对匮乏。 为了回答这一问题,研究人员选用斑马鱼幼鱼的视网膜-视顶盖......阅读全文

遗传发育所发现神经突触发育的调控机制

  神经突触是高度特化的细胞间连接,负责神经元与其靶细胞之间的信息传递。对突触形成和生长发育进行深入研究,不仅有利于阐明大脑发育和功能的分子机制,而且可以加深对相关神经精神疾病发病机制的认识。已知BMP(bone morphogenetic protein:骨形成蛋白)信号通路对多种组织器官包括大脑

突触发育也有昼夜节律性

  日出而作,日落而息。在人类行为的背后,是生物钟的调控。发育或许也是如此。日前,我国科学家以经典的视网膜-视顶盖突触为模型,运用在体双光子长时程成像,发现了发育早期突触形成速率存在昼夜节律性,为生物钟参与调节动物发育过程奠定了重要理论基础,为认识神经环路连接建立的发育规律提供了重要实验依据。  该

遗传发育所神经突触发育研究取得新进展

  神经突触是神经元之间进行信息交流的特化结构。长期以来,神经突触的发育与重塑是神经科学研究的核心科学问题。突触重塑是生物个体发育过程中神经环路的形成以及生物对生理和(或)环境变化的适应过程中普遍存在的生物学现象。同时,突触重塑的异常会导致许多重要的神经疾病。然而,我们对突触重塑的分子

《Science》极早期发育时期惊现神经突触

  大脑新皮层(cerebral neocortex)掌权人脑功能,如有意识的思维和语言。在新皮层中,数十亿神经元被精确排列成有序的6层结构。在婴儿时期,这些神经元有次序地生成,再迁移至大脑表面。  “亚板神经元(subplate neurons)”是新皮层首批出现的神经元之一,它们在新皮层发育时短

遗传发育所脑肿瘤抑制因子调控突触发育研究获进展

  神经突触是神经元与其靶细胞之间进行信息交流的特化结构。突触生长过程的精确调控对于神经环路的形成和可塑性至关重要,突触发育和功能的异常导致多种神经精神疾病包括智力低下、自闭症、精神分裂症和神经变性病等。因此,寻找和鉴定突触发育和功能调控基因一直是神经生物学家的重要研究内容之一。   果蝇脑肿瘤基

遗传发育所揭示神经突触稳态调控新机制

  突触是掌管神经系统信号传递的关键结构。成年大脑中突触的结构可塑性,即突触的形成和消失,被认为是长期记忆形成的基础。长时程在体成像观察表明:中枢神经系统中大部分轴突或树突以及突触的结构相当稳定,但受伤、丰富环境培养或长时间的感觉刺激会导致轴、数树突分支的产生和消失,这种产生和消失往往伴随着新突触的

张永清PLoS Genetics解析神经突触发育调控新机制

  神经突触是高度特化的细胞间连接,负责神经元与其靶细胞之间的信息传递。对突触形成和生长发育进行深入研究,不仅有利于阐明大脑发育和功能的分子机制,而且可以加深对相关神经精神疾病发病机制的认识。已知BMP(bone morphogenetic protein:骨形成蛋白)信号通路对多种组织器官包括大脑

中加科学家发现孤独症致病基因参与突触发育

为孤独症发生的分子神经生物学机制提供重要线索  作为目前世界上患病人数增长最快的疾病之一,孤独症越来越受关注,但其发病机理依旧是一个谜团,存有争议。日前,美国《神经科学杂志》(The Journal of Neuroscience)发表了东南大学生命科学研究院研究组和加拿大多伦多大学鲍利安

神经所研究揭示发育期视网膜突触功能具有可塑性

  《神经元》(Neuron)杂志于8月9日发表了中科院上海生命科学研究院神经科学研究所杜久林研究组题为“斑马鱼发育期视网膜兴奋性突触功能的长时程增强”的研究论文。该工作运用在体研究方法,首次发现了视网膜突触功能在发育时期具有长时程增强(long-term potentiation,

遗传发育所:糖鞘脂MacCer与Wnt相互作用促进神经突触生长

  脂质作为细胞膜组分和信号分子,对神经系统的发育与功能至关重要。多种参与脂代谢的基因突变后导致神经系统疾病。但脂质种类繁多并在合成代谢通路中相互转化,哪些脂质参与调控神经发育及其相关调控机制是神经生物学领域的重大科学问题。  中国科学院遗传与发育生物学研究所研究员张永清实验室以传统的模式生物果蝇为

陈宜张著作《突触》:研究“突触”的一块基石

   读陈宜张院士沉甸甸的学术著作《突触》,我们深切感受到的是一位老科学家在科学征程上执着追求的赤诚。陈宜张已87岁,成就卓著,仍没有懈怠,辛勤耕耘,在独立出版54万字的《神经科学的历史发展与思考》五年之后,又以一人之力推出大作《突触》。其为神经科学传道授业的热忱,不能不让我们这些学界晚辈为之汗颜。

瘦素可促进突触形成或突触发生

  瘦素这种激素以调节食欲而闻名,如今证据表面,它似乎会影响神经元的发育——这一发现可能有助于解释诸如自闭症等与功能失调的突触形成有关的疾病。  瘦素是一种由成人体内脂肪细胞释放的激素,研究人员主要关注它是如何控制食欲的。在5月18日发表在《科学信号》(Science Signaling)杂志上的一

什么是免疫突触?

T细胞突触即免疫突触。成熟T细胞在与APC识别结合的过程中,多种跨膜分子聚集在富含神经鞘磷脂和胆固醇的“筏”状结构上并且互相靠拢成簇,形成细胞间互相结合的部位,其中心区为TCR和抗原肽-MHC分子,以及T细胞膜辅助分子和相应配体,周围环形分布着大量的其它细胞粘附分子。

突触的含义以及横过突触空隙传递神经讯号的步骤

突触(synapse)是神经纤维间的连繫。所有的神经纤维都是以轴突末稍(dendrite)连到其它神经纤维的树突末稍(axonbrush)。而且在轴突末稍和树突末稍间留有一个空隙,称为突触空隙(synspticcleft)。如下图所示。  横过突触空隙传递神经讯号的步骤: (1)神经讯号到达轴突末稍

最新研究发现突触脉冲的强度与突触大小直接相关

  神经细胞通过突触彼此交流。近日,发表在《Nature》上的一项研究中,来自苏黎世大学神经信息学研究所和苏黎世联邦理工学院的Kevan Martin实验室的研究团队发现,这些联系似乎比以前认为的要强大得多。突触越大,传递的信号就越强。这些发现将有助于更好地了解大脑功能以及神经系统疾病是如何产生的。

神经所揭示智障相关蛋白CDKL5在兴奋性突触发育中的作用

  5月13日,《美国科学院院报》(PNAS)在线发表了中科院上海生科院神经科学研究所熊志奇组的最新研究论文:《棕榈酰化依赖的CDKL5-PSD95相互作用调控CDKL5的突触定位和树突棘的发育》。这项工作揭示了智障相关蛋白CDKL5在兴奋性突触发育中的重要作用,增进了对CDKL5相关疾病的机理的理

突触信号传送的概念

中文名称突触信号传送英文名称synaptic signaling定  义神经系统中穿过化学突触进行细胞间的信号传递方式。应用学科细胞生物学(一级学科),细胞通信与信号转导(二级学科)

突触信号传送的定义

中文名称突触信号传送英文名称synaptic signaling定  义神经系统中穿过化学突触进行细胞间的信号传递方式。应用学科细胞生物学(一级学科),细胞通信与信号转导(二级学科)

突触信号传送的定义

中文名称突触信号传送英文名称synaptic signaling定  义神经系统中穿过化学突触进行细胞间的信号传递方式。应用学科细胞生物学(一级学科),细胞通信与信号转导(二级学科)

什么是T细胞突触 ?

T细胞突触是APC(抗原提呈细胞)和T细胞相互作用的过程中,在细胞与细胞接触部位形成了一个特殊的结构,称为T细胞突触(T cell synapse),又称为免疫突触(immunological synapse)。

人工突触可自主学习

  来自法国国家科学研究中心及其他研究组织的研究人员创造了一种能够自主学习的人工突触。他们还对该设备进行建模,这对于开发更复杂的脑回路至关重要。该研究4月3日在《自然—通讯》杂志上发表。  生物模拟学的目标之一是从大脑的功能中获得灵感,以便设计越来越多的智能机器。这一原则已经以完成特定任务的算法形式

研究揭示突触可塑性长时程增强的突触后分子机制

  中枢神经系统是脊椎动物调控最复杂、最严谨的器官之一,控制着感觉感知、情绪调节和机体维持等基本神经活动,以及思维、认知和意识等高级神经活动。大脑最重要的特征之一就是能够存储大量的信息,即学习和记忆能力,在阿兹海默病等神经精神疾病的患者中,学习和记忆能力的异常是重要的临床表征之一。神经元之间相互形成

Nature:星形细胞参与突触消除

  突触消除是脑发育的一个重要方面,在其中突触接触的数量以依赖于活动的方式减少。胶质细胞(在脑中发挥各种作用的非神经细胞)最近被发现在突触重塑中起一定作用,其中能吞噬细胞的小神经胶质负责一定比例的连接优化,而关于这一现象背后机制的其他情况则基本上不清楚。   在这篇文章中,Won-Suk Chun

简述突触核蛋白错误折叠

  研究发现α-突触核蛋白正常、错误折叠及其寡聚化之间存在动态平衡,当这种平衡被打破后原纤维迅速聚集成大分子、不溶性的细纤维;α-突触核蛋白在不同的影响因素下会表现出许多种形态,包括舒展态、溶解前球型态、α-螺旋态(膜结合),β-片层态、二聚体态、寡聚体态、以及不可溶的无定型态和纤维态;α-突触核蛋

(-)黄皮酰胺酰胺有利于海马回CA1区突触的突触传递

中国医学科学院北京协和医学院陈乃宏研究员团队近日在European Journal of  Pharmacology发表文章,主要探讨了(-)黄皮酰胺酰胺对海马回CA1区突触(hippocampal Schaffer  collateral-CA1 synapses)信号传递的作用。 黄皮酰胺是从民

超导突触处理信息能力超人脑

  通过高速电子探针连接的人造突触。   图片来源:《自然》杂志官网   据英国《自然》杂志网站近日报道,美国科学家研制出一款模拟人脑神经中枢处理过程的超导突触,其信息处理速度比人脑更快,而且更高效。研究人员表示,尽管该人造突触商用还面临不少困难,但它是神经形态计算设备发展史上的里

关于突触核蛋白的特性介绍

  它的结构很大程度上依赖于其所处的细胞内环境,并且会表现出不同的结构如单体、寡聚体、原纤维和纤维等,病理状态下的突触核蛋白容易聚集形成不溶性的纤维蛋白沉淀,最终导致神经细胞死亡。人类基因学的研究证明了α-突触核蛋白基因突变在家族性的帕金森病中的主要致病地位,并且α-突触核蛋白的聚集有类似朊蛋白样的

突触核蛋白抗细胞凋亡作用

  Alves da Costa等发现与模拟转染的TSM1型神经元对照,野生型的α-突触核蛋白能够显著地减弱三种不同的细胞凋亡诱导剂星孢菌素、依托泊苷和神经酰胺C2对胞内半胱天冬酶(caspase)的激活[30],同样这可能与α-突触核蛋白的伴侣样蛋白作用有关;Ostrerova等也发现α-突触核蛋

超导突触处理信息能力超人脑

  通过高速电子探针连接的人造突触。图片来源:《自然》杂志官网  据英国《自然》杂志网站近日报道,美国科学家研制出一款模拟人脑神经中枢处理过程的超导突触,其信息处理速度比人脑更快,而且更高效。研究人员表示,尽管该人造突触商用还面临不少困难,但它是神经形态计算设备发展史上的里程碑,可用于未来类脑计算机

突触核蛋白的发病机制介绍

  损害线粒体:Nakamura等发现在哺乳动物的多种细胞中过量表达α-突触核蛋白可以造成线粒体的裂解,而在胞内的其他细胞器的形态变化很小(如高尔基复合体),α-突触核蛋白不抑制线粒体的融合而表现出促进其分裂,并且不依靠线粒体分裂时需要的主要分裂蛋白Drp1[42];另外过量表达的α-突触核蛋白能够