Antpedia LOGO WIKI资讯

绿潮藻叶绿体基因组进化机理研究取得新进展

原文地址:http://news.sciencenet.cn/htmlnews/2023/6/503670.shtm石莼属海藻是一类具有重要生态功能和开发潜力的经济海藻,同时也是一类可以暴发性生长导致绿潮灾害的大型绿藻,在全球范围内广泛分布。近日,中国科学院海洋研究所海洋生态环境基因组学团队围绕石莼属绿藻叶绿体基因组进化机理开展研究,取得重要进展。 相关研究成果发表在国际学术期刊《植物科学前沿》。 石莼属绿潮藻叶绿体基因组基因顺序比较 海洋研究所供图GC含量指在DNA4种碱基中,鸟嘌呤和胞嘧啶所占的比率。通过对石莼纲叶绿体基因组的比较研究,海洋生态环境基因组学团队发现, 在进化过程中,石莼属叶绿体基因组通过在基因组层面作用于GC含量的强选择方式,极大地降低了基因组的GC含量。石莼属叶绿体基因组GC含量只有23.89-26.25%,其含量水平是在目前已知藻类中最低。这种极端方式的建立很可能赋予了石莼属绿藻重要的......阅读全文

绿潮藻叶绿体基因组进化机理研究取得新进展

原文地址:http://news.sciencenet.cn/htmlnews/2023/6/503670.shtm石莼属海藻是一类具有重要生态功能和开发潜力的经济海藻,同时也是一类可以暴发性生长导致绿潮灾害的大型绿藻,在全球范围内广泛分布。近日,中国科学院海洋研究所海洋生态环境基因组学团队围绕石莼

叶绿体基因组

叶绿体是地球上绿色植物把光能转化为化学能的重要细胞器,叶绿体中进行的光合作用是严格地受到遗传控制的。早在20世纪初,人们就已知叶绿体的某些性状是呈非孟德尔式遗传的,但直到60年代才发现了叶绿体DNA(chloroplast DNA,ctDNA)。叶绿体基因组是一个裸露的环状双链DNA分子,其大小在1

叶绿体基因组的概念

采用高盐、低pH值法提取雷蒙德氏棉叶绿体DNA;通过物理剪切法获得随机断裂的DNA片段;剪切片段末端、补平修饰后与pCC1FOS载体连接;用噬菌体包装蛋白包装重组DNA,侵染大肠杆菌EPI300,构建了雷蒙德氏棉叶绿体基因组文库。对于叶绿体DNA剪切,以1 mL注射器中等速度吸打18次为最佳参数。

叶绿体基因组的特点介绍

  叶绿体基因组在很多方面与线粒体基因组的结构是相似的。叶绿体DNA(cpDNA)是双链环状,缺乏组蛋白和超螺旋。cpDNA中的GC含量与核DNA及mtDNA有 很大的不同。因此可用CsCl密度梯度离心来分离cpDNA。  每个叶绿体中cpDNA的拷贝数随着物种的不同而不同。但都是多拷贝的。这些拷贝

叶绿体基因组 - cpDNA的相关介绍

  叶绿体基因组在很多方面与线粒体基因组的结构是相似的。叶绿体DNA(cpDNA)是双链环状,缺乏组蛋白和超螺旋。cpDNA中的GC含量与核DNA及mtDNA有 很大的不同。因此可用CsCl密度梯度离心来分离cpDNA。  每个叶绿体中cpDNA的拷贝数随着物种的不同而不同。但都是多拷贝的。这些拷贝

Nature:藻类基因组解读叶绿体秘史

  我们初学生物时接触得最早的就是光合作用,光合作用利用二氧化碳、水和太阳能合成有机物。世界上最重要的光合作用真核生物(植物)多半并不是自己演化出光合作用能力的,它们的叶绿体是从其他生物中“拿来”的。   这些叶绿体来源于真核宿主吞食的光合细菌,这一过程被称为初级内共生。随后,红藻和绿藻中的叶绿体

细胞化学基础--叶绿体基因组 - cpDNA

叶绿体基因组在很多方面与线粒体基因组的结构是相似的。叶绿体DNA(cpDNA)是双链环状,缺乏组蛋白和超螺旋。cpDNA中的GC含量与核DNA及mtDNA有 很大的不同。因此可用CsCl密度梯度离心来分离cpDNA。每个叶绿体中cpDNA的拷贝数随着物种的不同而不同。但都是多拷贝的。这些拷贝位于类核

蓝藻和叶绿体基因组的比较研究

原核的蓝藻和真核植物(包括其他藻类)中的叶绿体,都同样进行放氧的光合作用,这为人类和整个生物界提供了赖以生存的食物、氧气、能源和原料。对叶绿体和蓝藻的细胞结构和分子生物学特性作分析,证明真核生物的叶绿体可能起源于蓝藻祖先的内共生。这使蓝藻在20多年来已成为光合作用研究的模式生物。蓝藻基因组的作图和测

蓝藻和叶绿体基因组的比较研究

蓝藻和叶绿体基因组的比较研究原核的蓝藻和真核植物(包括其他藻类)中的叶绿体,都同样进行放氧的光合作用,这为人类和整个生物界提供了赖以生存的食物、氧气、能源和原料。对叶绿体和蓝藻的细胞结构和分子生物学特性作分析,证明真核生物的叶绿体可能起源于蓝藻祖先的内共生。这使蓝藻在20多年来已成为光合作用研究的模

蓝藻和叶绿体基因组的比较研究

  原核的蓝藻和真核植物(包括其他藻类)中的叶绿体,都同样进行放氧的光合作用,这为人类和整个生物界提供了赖以生存的食物、氧气、能源和原料。对叶绿体和蓝藻的细胞结构和分子生物学特性作分析,证明真核生物的叶绿体可能起源于蓝藻祖先的内共生。这使蓝藻在20多年来已成为光合作用研究的模式生物。  蓝藻基因组的

叶绿体基因组 - cpDNA的结构功能特点

叶绿体基因组在很多方面与线粒体基因组的结构是相似的。叶绿体DNA(cpDNA)是双链环状,缺乏组蛋白和超螺旋。cpDNA中的GC含量与核DNA及mtDNA有 很大的不同。因此可用CsCl密度梯度离心来分离cpDNA。每个叶绿体中cpDNA的拷贝数随着物种的不同而不同。但都是多拷贝的。这些拷贝位于类核

烟草和水稻叶绿体cpDNA基因组成特点

1.基因组由两个反向重复序列(IR)和一个短单拷贝序列(short single copy sequence, SSC)及一个长单拷贝序列(long single copy sequence, LSC)组成;2.IRA和IRB长各10-24Kb,编码相同,方向相反。3.cpDNA启动子和原核生物的相

蓝藻和叶绿体基因组的比较研究

原核的蓝藻和真核植物(包括其他藻类)中的叶绿体,都同样进行放氧的光合作用,这为人类和整个生物界提供了赖以生存的食物、氧气、能源和原料。对叶绿体和蓝藻的细胞结构和分子生物学特性作分析,证明真核生物的叶绿体可能起源于蓝藻祖先的内共生。这使蓝藻在20多年来已成为光合作用研究的模式生物。蓝藻基因组的作图和测

关于叶绿体基因组 - cpDNA的基本介绍

  叶绿体基因组在很多方面与线粒体基因组的结构是相似的。叶绿体DNA(cpDNA)是双链环状,缺乏组蛋白和超螺旋。cpDNA中的GC含量与核DNA及mtDNA有 很大的不同。因此可用CsCl密度梯度离心来分离cpDNA。  每个叶绿体中cpDNA的拷贝数随着物种的不同而不同。但都是多拷贝的。这些拷贝

蓝藻和叶绿体基因组的比较研究

  原核的蓝藻和真核植物(包括其他藻类)中的叶绿体,都同样进行放氧的光合作用,这为人类和整个生物界提供了赖以生存的食物、氧气、能源和原料。对叶绿体和蓝藻的细胞结构和分子生物学特性作分析,证明真核生物的叶绿体可能起源于蓝藻祖先的内共生。这使蓝藻在20多年来已成为光合作用研究的模式生物。  蓝藻基因组的

榕属叶绿体基因组比较研究获进展

  近年来,叶绿体基因组因基因组小、突变率和重组率低的特点,被广泛用于植物系统发育、分子进化、谱系地理学的研究。榕属(Ficus)作为桑科的最大属,且是热带雨林的关键物种,而其系统发育关系仍需进一步研究。榕属物种具有多样的生态型,体现了对不同生境的高度适应性。尽管近年来关于榕属叶绿体基因组的研究有所

植物叶绿体基因组基因表达调控的研究

叶绿体基因组的特点是具相同或相关功能的基因组成复合操纵子结构。这一特点有利于叶绿体基因的表达与调控,例如rpoB-rpoC-rpoC 2操纵子是由编码RNA聚合酶各个亚基的基因聚合在一起而形成的,而psbI-psbK-psbD-psbC操纵子则编码PSⅡ的部分蛋白质。叶绿体基因组基因表达调控方式。转

植物叶绿体基因组基因表达调控的研究

  叶绿体基因组的特点是具相同或相关功能的基因组成复合操纵子结构。这一特点有利于叶绿体基因的表达与调控,例如rpoB-rpoC-rpoC 2操纵子是由编码RNA聚合酶各个亚基的基因聚合在一起而形成的,而psbI-psbK-psbD-psbC操纵子则编码PSⅡ的部分蛋白质。叶绿体基因组基因表达调控方式

植物叶绿体基因组基因表达调控的研究

  叶绿体基因组的特点是具相同或相关功能的基因组成复合操纵子结构。这一特点有利于叶绿体基因的表达与调控,例如rpoB-rpoC-rpoC 2操纵子是由编码RNA聚合酶各个亚基的基因聚合在一起而形成的,而psbI-psbK-psbD-psbC操纵子则编码PSⅡ的部分蛋白质。叶绿体基因组基因表达调控方式

植物叶绿体基因组基因表达调控的研究

叶绿体基因组的特点是具相同或相关功能的基因组成复合操纵子结构。这一特点有利于叶绿体基因的表达与调控,例如rpoB-rpoC-rpoC 2操纵子是由编码RNA聚合酶各个亚基的基因聚合在一起而形成的,而psbI-psbK-psbD-psbC操纵子则编码PSⅡ的部分蛋白质。叶绿体基因组基因表达调控方式。转

中国植物叶绿体基因组研究颠覆学界认知

  中国科学家一项历时五年的研究成果颠覆了学界对植物叶绿体基因组的认知——科学家发现整个叶绿体基因组都是可以转录的。该研究成果已于近日发表在了《自然》出版集团的《科学报告》上。  《科学报告》的审稿专家一致认为,“这一成果首次发现了我们从来没有想象过的现象,颠覆了传统遗传学上认为的只有叶绿体编码基因

植物叶绿体基因组基因表达调控的研究

叶绿体基因组的特点是具相同或相关功能的基因组成复合操纵子结构。这一特点有利于叶绿体基因的表达与调控,例如rpoB-rpoC-rpoC 2操纵子是由编码RNA聚合酶各个亚基的基因聚合在一起而形成的,而psbI-psbK-psbD-psbC操纵子则编码PSⅡ的部分蛋白质。叶绿体基因组基因表达调控方式。转

叶绿体和线粒体基因组变异检测获突破

  近日,《公共科学图书馆―综合》发表了中国农业科学院油料作物研究所博士后曾长立与合作导师伍晓明研究建立的能高通量检测叶绿体和线粒体基因组遗传变异的新方法。   据曾长立介绍,叶绿体和线粒体基因组作为植物细胞质基因组,对光合作用、呼吸作用等重要生命过程具有重要意义。   研究叶绿体和线粒体基因组

关于叶绿体基因组的基本特点的介绍

  叶绿体基因组在很多方面与线粒体基因组的结构是相似的。叶绿体DNA(cpDNA)是双链环状,缺乏组蛋白和超螺旋。cpDNA中的GC含量与核DNA及mtDNA有 很大的不同。因此可用CsCl密度梯度离心来分离cpDNA。  每个叶绿体中cpDNA的拷贝数随着物种的不同而不同。但都是多拷贝的。这些拷贝

细胞质雄性不育与叶绿体基因组

CMS 与叶绿体的关系还存在很大的争议。相对于植物线粒体而言,叶绿体基因组较为保守也较小(120~160 kb),因此对它的认识要比对线粒体深入的多。研究发现植物叶绿体一般分为4个区:两个反向重复区,大单拷贝区和小单拷贝区。已有多种植物叶绿体的物理图谱被构建。对高粱的 CMS 系及相应保持系的叶绿体

科学家揭示德保苏铁叶绿体基因组特征

  广西大学植物生理生态与进化课题组在苏铁植物的基因组学研究方面取得新进展,首次用苏铁的叶绿体全基因组重建了苏铁植物的系统进化树,揭示托叶铁科为非单系起源,该研究成果近日发表在《科学报告》上。  据介绍,研究人员通过对德保苏铁展开二代测序,获得了德保苏铁基因组几百万条的短片段,用先进的算法进行组装,

叶绿体基因组遗传信息获取技术体系建立

  记者日前从中科院昆明植物所获悉,该所种质资源库多年来致力于叶绿体基因组学研究,并建立了较为完善的叶绿体基因组遗传信息获取技术体系。该技术体系解决了叶绿体基因组获取方法需要大量新鲜材料以及一些物种因个体微小须通过二代测序方法获取叶绿体基因组的难题。  2012年以来,科研人员利用二代测序技术研究了

关于蓝藻和叶绿体基因组的比较研究介绍

  原核的蓝藻和真核植物(包括其他藻类)中的叶绿体,都同样进行放氧的光合作用,这为人类和整个生物界提供了赖以生存的食物、氧气、能源和原料。对叶绿体和蓝藻的细胞结构和分子生物学特性作分析,证明真核生物的叶绿体可能起源于蓝藻祖先的内共生。这使蓝藻在20多年来已成为光合作用研究的模式生物。  蓝藻基因组的

细胞化学基础--蓝藻和叶绿体基因组的比较研究

原核的蓝藻和真核植物(包括其他藻类)中的叶绿体,都同样进行放氧的光合作用,这为人类和整个生物界提供了赖以生存的食物、氧气、能源和原料。对叶绿体和蓝藻的细胞结构和分子生物学特性作分析,证明真核生物的叶绿体可能起源于蓝藻祖先的内共生。这使蓝藻在20多年来已成为光合作用研究的模式生物。蓝藻基因组的作图和测

植物叶绿体基因组可以全部转录的新机制

  叶绿体是地球上绿色植物把光能转化为化学能、供给地球上的其它生物能量来源的重要细胞器,对叶绿体的功能和叶绿体基因组转录机制的研究一直以来是全球细胞生物学家、遗传学家和分子生物学家孜孜以求的研究热点。中国科学院昆明植物研究所研究员高立志带领的研究团队,历时五年,通过对三种高等植物(水稻、玉米和拟南芥