Antpedia LOGO WIKI资讯

怎样检测土壤硝态氮

可以用氯化钾浸提后,过滤液上紫外分光光度计,分别用220nm和275nm 波长下测定即可。方法原理:利用硝酸根离子在220 nm处有较强的紫外吸收这一特性,定量分析了土壤浸提液中的 NO-3. 溶解的有机物在220 nm和275 nm处均有吸收, 而NO-3在275 nm处没有吸收, 因此在275 nm波长处做另一测量,以校正硝酸盐值. 最低检出浓度是0 004 mg/ kg,测定上限为4 000 mg/ kg,适合高浓度土样浸提液的高倍稀释。......阅读全文

氨氮,总氮,硝态氮、亚硝态氮,凯氏氮,分别是什么?

   水体中的氮元素由于是造成富营养化的元凶,往往是水污染控制行业的科研和工程技术的关注重点,其重要性甚至不亚于有机污染物。整理了水体中氮元素中的常见存在形态以及各自的概念和测试方法。希望给你的研究和学习提供参考。   水体中氮元素的形式及转化   进入水体中的氮主要有无机氮和有机氮之分

硝态氮是什么

硝态氮是指硝酸盐中所含有的氮元素。水和土壤中的有机物分解生成铵盐,被氧化后变为硝态氮。以硝态氮为主,再加上亚硝(酸盐)态氮、氨态氮和有机态氮总称之为总氮或全(态)氮。有些国家的水质标准中,对湖水水质已制定了全氮的标准。如日本规定上水的硝态氮或亚硝态(酸盐)氮均不超过10mg/L。

怎样检测土壤硝态氮

可以用氯化钾浸提后,过滤液上紫外分光光度计,分别用220nm和275nm 波长下测定即可。方法原理:利用硝酸根离子在220 nm处有较强的紫外吸收这一特性,定量分析了土壤浸提液中的 NO-3. 溶解的有机物在220 nm和275 nm处均有吸收, 而NO-3在275 nm处没有吸收, 因此在275

什么是总氮、氨氮、硝态氮、凯氏氮?

  1、氮元素的关系  进入水体中的氮主要有无机氮和有机氮之分。无机氮包括氨态氮(简称氨氮)和硝态氮。  氨氮包括游离氨态氮NH3-N和铵盐态氮NH4+-N;  硝态氮包括硝酸盐氮NO3--N和亚硝酸盐氮NO2--N;  有机氮主要有尿素、氨基酸、蛋白质、核酸、尿酸、脂肪胺、有机碱、氨基糖等含氮有机

测定水质中的硝态氮

原理:NO3-在无水条件下与酚二磺酸试剂作用,生成硝基酚二磺酸。C6H3OH(HSO3)2+NO3-=C6H2OH(HSO3)2NO2+OH-2,4-酚二磺酸6-硝基酚-2,4-二磺酸生成物在酸性介质中无色,碱化后则为稳定的黄色盐溶液,可在400-425nm处比色测定。试剂配制:(1)酚二磺酸显色剂

如何测定土壤硝态氮含量

答:推荐使用紫外分光光度法,它的原理是:土壤浸出液中的NO-3,在紫外分光光度计波长为210nm处,有较高的吸光度,而浸出液中的其他物质,除OH-、CO2-3、HCO-3、NO-2、Fe3+和有机质等外,吸光度均很小。将浸出液加酸中和酸化,即可消除OH-、CO2-3、HCO-3的干扰。NO-2一般含

测定水质中的硝态氮

原理:NO3-在无水条件下与酚二磺酸试剂作用,生成硝基酚二磺酸。C6H3OH(HSO3)2+NO3-=C6H2OH(HSO3)2NO2+OH-2,4-酚二磺酸6-硝基酚-2,4-二磺酸生成物在酸性介质中无色,碱化后则为稳定的黄色盐溶液,可在400-425nm处比色测定。试剂配制:(1)酚二磺酸显色剂

硝态氮的好处和坏处

硝态氮的生理作用:硝态氮必须经过代谢还原,转变为氨后才能合成氨基酸和蛋白质等。过氧化物酶(GSH-Px)是机体内广泛存在的一种重要的过氧化物分解酶。使有毒的过氧化物还原成无毒的羟基化合物,同时促进H2O2的分解,从而保护细胞膜的结构及功能不受过氧化物的干扰及损害。

土壤硝态氮含量正常范围值

对于主要蔬菜产区设施栽培土壤中硝态氮的累积现状,探讨了习惯施肥对土壤硝态氮累积量的影响.结果表明:多数试验菜地氮、磷、钾肥施用不合理,作物所需钾肥仅靠有机肥补充;设施栽培0~2 m土层硝态氮累积总量远远高于相邻粮田,硝态氮含量随土层加深逐渐减少,二者呈显著负相关;部分试验地1~2 m土层中硝态氮相对

土肥速测仪硝态氮的测定的介绍

  原理  在酸性条件下,硝酸试粉中的锌与柠檬酸作物放出的氢将NO3-还原成NO2-,这些NO2-连同土中原有的少量NO2-先和对氨基苯磺酸作用,生成重氮化合物,重氮化合物再和α-萘胺作用生成红色的偶氮染料。红色的深浅在一定范围内与硝态氮的含量成正比。  方法  (1) 分别吸含硝态氮2和16ppm

土壤养分速测仪硝态氮的测定简述

  原理  在酸性条件下,硝酸试粉中的锌与柠檬酸作物放出的氢将NO3-还原成NO2-,这些NO2-连同土中原有的少量NO2-先和对氨基苯磺酸作用,生成重氮化合物,重氮化合物再和α-萘胺作用生成红色的偶氮染料。红色的深浅在一定范围内与硝态氮的含量成正比。  方法  (1) 分别吸含硝态氮2和16ppm

土壤中硝态氮的含量标准值

对于主要蔬菜产区设施栽培土壤中硝态氮的累积现状,探讨了习惯施肥对土壤硝态氮累积量的影响.结果表明:多数试验菜地氮、磷、钾肥施用不合理,作物所需钾肥仅靠有机肥补充;设施栽培0~2 m土层硝态氮累积总量远远高于相邻粮田,硝态氮含量随土层加深逐渐减少,二者呈显著负相关;部分试验地1~2 m土层中硝态氮相对

植物体内硝态氮含量的测定

实验材料 植物材料试剂、试剂盒 硝态氮标准溶液氢氧化钠溶液水杨酸─硫酸溶液仪器、耗材 分光光度计天平试管吸量管容量瓶洗耳球电炉铝锅玻璃泡

植物体内硝态氮含量的测定

 硝态氮是植物最主要的氮源。植物体内硝态氮含量往往能反映土壤中硝态氮供应情况,因此可作为土壤肥氮肥的指标。测定植物体内的硝态氮含量,不仅能够反映出植物的氮素营养情况,而且对鉴定蔬菜和植物为原料的加工制品的品质也有重要的意义。    (一)原理    在浓酸条件下,NO3-与水杨酸反应,生成硝基水杨酸

如何进行土壤硝态氮田间快速测试

答:反射仪法快速测试田间土壤硝态氮含量的方法如下:(1)方法原理在田间条件下,按照土壤样品采集规范完成混合土样的采集、土样混合、过5毫米筛、浸提等步骤,采用反射仪硝酸盐快速定量方法,测得土壤硝酸盐的含量。(2)仪器设备取土工具(土钻)、天平(精读0.1克)、称量勺、称量纸、定性滤纸、胶卷盒或小烧杯、

如何进行土壤硝态氮田间快速测试

答:反射仪法快速测试田间土壤硝态氮含量的方法如下:(1)方法原理在田间条件下,按照土壤样品采集规范完成混合土样的采集、土样混合、过5毫米筛、浸提等步骤,采用反射仪硝酸盐快速定量方法,测得土壤硝酸盐的含量。(2)仪器设备取土工具(土钻)、天平(精读0.1克)、称量勺、称量纸、定性滤纸、胶卷盒或小烧杯、

总氮、氨氮、硝态氮、凯氏氮的关系与区别是什么?

氮元素的关系进入水体中的氮主要有无机氮和有机氮之分。无机氮包括氨态氮(简称氨氮)和硝态氮。氨氮包括游离氨态氮NH3-N和铵盐态氮NH4+-N;硝态氮包括硝酸盐氮NO3--N和亚硝酸盐氮NO2--N;有机氮主要有尿素、氨基酸、蛋白质、核酸、尿酸、脂肪胺、有机碱、氨基糖等含氮有机物;可溶性有机氮主要以尿

植物体内硝态氮含量的测定实验

实验方法原理在强酸条件下NO3-与水杨酸反应,生成硝基水杨酸。生成的硝基水杨酸在碱性条件下(pH>12)呈黄色,在一定范围内,其颜色的深浅与含量成正比,可直接用分光光度计测定。实验步骤一、材料仪器设备及试剂1. 材料:小麦或水稻等植物的叶片;2. 仪器设备:分光光度计;电子分析天平;10ml、20m

有机碳和硝态氮对土壤有何影响?

  凋落物和土壤有机碳是人工林土壤养分的主要来源,其分解过程对维持杉木人工林土壤质量及肥力具有重要意义。氮素是影响凋落物及土壤有机碳分解速率的重要控制因素,以往研究多将凋落物和土壤分开考虑,而凋落物和土壤是一个不可分割的完整系统,这个系统如何对氮素改变做出响应仍知之甚少。  中国科学院沈阳应用生态研

植物体内硝态氮含量的测定实验

实验方法原理 在强酸条件下NO3-与水杨酸反应,生成硝基水杨酸。生成的硝基水杨酸在碱性条件下(pH>12)呈黄色,在一定范围内,其颜色的深浅与含量成正比,可直接用分光光度计测定。实验步骤 一、材料仪器设备及试剂1. 材料:小麦或水稻等植物的叶片;2. 仪器设备:分光光度计;电子分析天平;10ml、2

植物体内硝态氮含量的测定实验

实验方法原理:在强酸条件下NO3-与水杨酸反应,生成硝基水杨酸。生成的硝基水杨酸在碱性条件下(pH>12)呈黄色,在一定范围内,其颜色的深浅与含量成正比,可直接用分光光度计测定。实验步骤:一、材料仪器设备及试剂1. 材料:小麦或水稻等植物的叶片;2. 仪器设备:分光光度计;电子分析天平;10ml、2

YN-反射仪测定土壤硝态氮的精度检验

一、    试验目的将国产的反射式比色仪应用于土壤中硝态氮的方法检测。二、    试验原理仪器原理:YN型反射仪是根据光漫反射原理——照射到粗糙的显色试纸的光经过多次反射、折射、散射及吸收后返回样品表面,即为漫反射光,它是光与样品内部分子发生作用以后的光,携带有丰富的样品结构和组织信息,利用漫反射(

南京土壤所土壤硝态氮同化过程研究取得进展

  农田土壤硝态氮的径流和淋溶加剧了地表水体富营养化和地下水硝酸盐污染,其根源在于施入的铵态氮肥在短时间内转变成易流失的硝态氮。因此,控制土壤中硝态氮的产生和累积是减少氮素损失的关键措施之一。已有研究发现,氮肥配施硝化抑制剂可以抑制硝态氮产生和淋洗,但硝化抑制剂亦会增加氨挥发损失并造成土壤有机污染。

用流动分析仪测土壤硝态氮和铵态氮

流动注射分析仪只能测定液态的硝态氮和铵态氮,原理是比色法(由内部模块完成)。所以,土壤前处理就是要把土壤里面的NH4、NO3浸提出来。常用的提取剂是0.5mol/L 的K2SO4(硫酸钾)、1mol/L的KCl(氯化钾),也有用去离子水浸提的。首先称取5-10g新鲜土壤于离心管或三角瓶中,准确记录称

土壤水分测试仪分析与硝态氮的关系

土壤水分不但影响蔬菜生长,也影响蔬菜的硝态氮含量。土壤水分测试仪测 定结果表明,土壤水分为150g/kg时,菠菜和小白菜整株的硝态氮含量最高,分别为913.6μg/g鲜重和1945.2μg/g鲜重。土壤水分升高, 蔬菜的硝态氮含量显著下降。土壤水分测试仪测定土壤水分为200和250g/kg时,2种蔬

土壤水分仪测得数值与硝态氮含量关系

水分在植物生命活动中起着十分重要的作用,和硝态氮的吸收及其在植物体内的还原转化密切相关。已有报道认为,土壤氮素供应是影响蔬菜硝态氮含量的重要因子,氮肥用量增加,蔬菜的硝态氮含量升高,同时土壤水分仪测定的水分含量也随之升高。在蔬菜茎叶各器官、部位之间硝态氮和水分的分布也具有一致性:硝态氮含量高的茎和叶

揭示了ROS调控植物硝态氮信号转导的分子机制

  活性氧(Reactive oxygen species, ROS)是植物在进行有氧代谢过程中不可避免的副产物,在遭遇逆境胁迫时大量积累,抑制植物生长,所以长期以来ROS被认为是一类毒害分子。但近年来的研究发现ROS还可作为信号分子调控植物生长和逆境响应,但ROS如何与体内激素和体外环境信号交叉调

研究发现氨氧化古菌在硝态氮流失中发挥更大作用

  我国现有红壤缓坡地(6~15°)2.1×107hm2,是我国发展粮食和亚热带经济作物及果、林、草的重要基地。湘北红壤丘岗区是我国南方红壤丘陵区农林符合生态系统的典型模块,以农田、果园、灌木丛、森林为主要土地利用类型。以往研究发现,高强度耕作,大量氮肥使用,加上每年5-8月,不均匀、高强度的降雨,

科学家揭示农业利用导致土壤硝态氮同化下降的内在机制

  土壤硝态氮微生物同化能力下降是导致亚热带地区农业利用红壤硝酸盐累积,氮素损失风险提高的重要原因。然而,作为土壤微生物的主要类群,真菌和细菌各自对硝态氮的同化对于农业利用如何响应还未知。因此,能够区分土壤中真菌和细菌对硝态氮的同化过程对于进一步认清农业利用导致硝态氮微生物同化能力下降的原因,进而制

城市大气硝态氮稳定同位素特征及其源解析研究获进展

  大气硝酸盐是大气氮氧化物的汇,可通过沉降的方式进入陆地和海洋生态系统并成为生态系统重要的氮来源。氮沉降量增加过度会产生一系列生态环境问题,如土壤酸化、水体富营养化等。我国由于经济高速发展,硝酸盐的前体物质NOx排放不断增加,是氮沉降量增加的重要因素。因此了解不同排放源对大气无机氮的贡献,有助于政