上海交大,中科大Nature子刊文章备受关注
来自中国科技大学,上海交通大学的研究人员发表了题为“Trapping red blood cells in living animals using optical tweezers”的文章,利用一种新型技术,捕获并操纵了活体小鼠中皮下毛细血管内的红细胞,从而拓展了动物活细胞动力学研究的应用技术,相关成果公布在Nature Communications杂志上。 文章的通讯作者为上海交通大学生物医学工程系魏勋斌教授,以及中国科技大学李银妹教授。魏勋斌教授现任上海交通大学特聘教授,主要研究肿瘤和免疫的在体光学影像和分子探针技术,曾首先建立了可实时无损监测小动物循环肿瘤细胞的在体流式图像系统。李银妹教授一直致力于光镊技术及其应用的研究,这项研究成果是交叉学科交融的成果。 非侵入性生物成像领域目前已经采用各种显微技术和共聚焦等技术,提高了图像的精确度,使得科学家们能深入探索活细胞中细胞过程的分子事件。但是尽管......阅读全文
云动力学的定义
云动力学是研究云的热力、动力结构及其演变规律的学科,它是云和降水物理学的组成部分,同云和降水微物理学的关系十分密切。
PCR的反应动力学
PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升。反应最终的DNA扩增量可用y=(1+X)n计算。Y代表DNA片段扩增后的拷贝数,X表示平均每次的扩增效率,n代表循环次数。平均扩增效率的理论值为100%,实际反应初期,靶序列DNA片段的增加呈指数形式,随着PCR产物的逐渐积累,被扩增的DN
酶动力学的概念
酶动力学是研究酶结合底物能力和催化反应速率的科学。研究者通过酶反应分析法(enzyme assay)来获得用于酶动力学分析的反应速率数据。
药物动力学应用介绍
药物动力学已成为一种新的有用的工具,它在药学领域里具有广泛的应用。医学上一些重大课题,如癌症、冠心病、高血压等迄今尚未找到的疗效卓越的新药。因而,寻找新药的方式,正在逐渐从经验转向更为合理的形式。例如,通过生物化学、生物物理学、酶学、药物动力学、统计学以及各种光谱技术以发展或设计新药、新制剂、新剂型
思密达药代动力学
该药不进入血液循环系统,并连同所固定的攻击因子随消化道自身蠕动排出体外。该药不影响X光检查,不改变大便颜色,不改变正常的肠蠕动。
酶促反应动力学
一、酶促反应1913年,Michaelis和Menten根据Henri等提出的酶-底物复合物学说,用简单的快速平衡或准平衡概念推导了单底物的酶促反应方程,即米-曼氏方程(Michaelis-Menten equation)。酶促反应可表示为:k1 k2 E + S ------------- ES
酶促反应动力学
一、酶促反应1913年,Michaelis和Menten根据Henri等提出的酶-底物复合物学说,用简单的快速平衡或准平衡概念推导了单底物的酶促反应方程,即米-曼氏方程(Michaelis-Menten equation)。酶促反应可表示为: k1 k2
什么是吸附动力学
吸附动力学(adsorption kinetic),是以研究吸附、脱附速度及各种影响因素为主要内容的分支学科。吸附、脱附速度主要由吸附剂与吸附质的相互作用及温度、压力等因素决定。吸附动力学的研究有助于探讨化学吸附和多相催化反应机理。1、吸附:当流体与多孔固体接触时, 流体中某一组分或多个组分在固体表
酶的应用动力学
酶动力学是研究酶结合底物能力和催化反应速率的科学。研究者通过酶反应分析法(enzyme assay)来获得用于酶动力学分析的反应速率数据。1902年,维克多·亨得利提出了酶动力学的定量理论; 随后该理论得到他人证实并扩展为米氏方程。 亨利最大贡献在于其首次提出酶催化反应由两步组成:首先,底物可逆地结
酶促反应动力学
一、酶促反应1913年,Michaelis和Menten根据Henri等提出的酶-底物复合物学说,用简单的快速平衡或准平衡概念推导了单底物的酶促反应方程,即米-曼氏方程(Michaelis-Menten equation)。酶促反应可表示为: k
酶促反应动力学
一、酶促反应1913年,Michaelis和Menten根据Henri等提出的酶-底物复合物学说,用简单的快速平衡或准平衡概念推导了单底物的酶促反应方程,即米-曼氏方程(Michaelis-Menten equation)。酶促反应可表示为: k
简述抗人T淋巴细胞兔免疫球蛋白的药代动力学介绍
在器官移植后选用抗人T淋巴细胞兔免疫球蛋白治疗者,最早在使用后的第一天就可获得总淋巴细胞降低(与基数相比,可达50%以上衰减),且可持续全疗程和疗程结束以后。(一般有40%的患者在3个月时,淋巴细胞计数恢复到50%以上。)检测淋巴细胞亚群(CD2、CD3、CD4、CD8、CD14、CD19、CD
关于继发性红细胞增多症的发病机制—CFUS的增殖动力学介绍
CFU-S的增殖动力学细胞增殖动力学是指用时间和数量来研究细胞群体增殖、分化和死亡的过程。细胞的增殖是通过细胞的分裂进行的。细胞周期是指以一次细胞分裂结束后开始,到下一次分裂的终末经历的整个过程。在细胞周期各时相的过程中顺序地进行着一系列特定的生化代谢。 (1)G1期:一般指细胞分裂完成子细胞
水杨酸钠是一级动力学还是零级动力学
零级动力学。水杨酸钠是一种有机物,是白色鳞片或粉末,无气味,久露光线中变粉红色。水杨酸钠的代谢是从一级动力学转变为零级动力学,所以是零级动力学。零级动力学指血中药物按恒定速率进行消除,消除速率与血药浓度高低无关,其血浆半衰期随起始浓度下降而缩短,不是固定值。
水杨酸钠是一级动力学还是零级动力学
零级动力学。水杨酸钠是一种有机物,是白色鳞片或粉末,无气味,久露光线中变粉红色。水杨酸钠的代谢是从一级动力学转变为零级动力学,所以是零级动力学。零级动力学指血中药物按恒定速率进行消除,消除速率与血药浓度高低无关,其血浆半衰期随起始浓度下降而缩短,不是固定值。
什么是非线性动力学?
非线性动力学,是物理学的思维进入传统方法所不能解决的问题的一座丰碑。也是非常有前途的工具学科,它为大数据时代提供潜在的分析引擎。为什么说非线性,因为物理之外的系统大多数不能用线性系统表述(详情请见《动力学是如何做预测的》)。动力学的核心使命是预测系统的变化,非线性动力学在这点上也是一样的。一个经典的
揭开DNA杂交动力学之谜
新南威尔士大学医学与健康学院EMBL澳大利亚单分子科学节点的纳米科学家和理论物理学家联合起来,揭开了控制两条匹配的DNA链完全结合(或杂交)形成双链DNA的复杂机制。他们的研究结果发表在《核酸研究》杂志上。大约50年前提出了一个理论,假设DNA链杂交的速度是由最初的接触决定的,这种接触导致DNA链上
酶促反应动力学(二)
三、pH对反应速度的影响 酶反应介质的pH可影响酶分子,特别是活性中心上必需基团的解离程度和催化基团中质子供体或质子受体所需的离子化状态,也可影响底物和辅酶的解离程度,从而影响酶与底物的结合。只有在特定的pH条件下,酶、底物和辅酶的解离情况,最适宜于它们互相结合,并发生催化作用,使酶促反应速度
拉西地平的药物动力学
口服肠道吸收迅速但不完全,绝对生物利用度30%~52%。血药浓度达峰时间为30~150min。血浆蛋白结合率95%。消除半衰期约为8h。只在肝脏代谢,有4个药理活性较低的代谢产物。70%的药物以代谢产物形式随粪便排出,其余代谢产物随尿排出。
某些药物代谢动力学数据
某些药物代谢动力学数据药 物生物利用度(%)尿排泄(%)血浆蛋白结合(%)清除率(ml·min-1·kg-1)分布容积(L/kg)半衰期(h)醋丁洛尔acebutolol3740266.81.22.7阿昔洛韦aciclovir15~3075153.370.692.4别嘌醇allopurinol80
地高辛的药代动力学
口服吸收迅速而完全,生物利用度高达90%以上,服药后1h血浆药物浓度达峰值,经4h达显效,6~12h达峰效应,血清治疗浓度15~25ng/mL,血浆蛋白结合率低,为20%~25%。主要经肝微粒体酶代谢消失,消除半衰期一般为4~7天。由胆汁排出,再循环后,由尿排出。
酶动力学的基本介绍
研究酶催化剂参与的生物反应过程中,酶反应速率及影响酶反应速率的各种因素。它能提出底物到产物之间可能历程与机理,获取反应速率和影响此速率的诸因素,例如温度、pH、反应物系的浓度以及有关抑制剂等的关系,以满足酶反应过程开发和生物反应器设计的需要。底物浓度的影响 长期以来,人们已经知道许多化学反应的速率
什么是尿动力学检查
尿动力学检查是泌尿外科学的一个分支学科,它主要依据尿流体力学和电生理学的基本原理和方法,检测尿路各部压力、流率及生物电活动,从而了解尿路排送尿液的功能和机制,以及排尿功能障碍性疾病的病理生理学变化。全面的尿动力学检查,是直观量化尿路功能较为理想的方法。
头孢唑肟的动力学
肌肉注射头孢唑肟1g,血药峰浓度于1h到达,为38.87mg/L。静脉推注(5min)1g的即刻血药浓度为159.32mg/L,静脉滴注该品1g(30min)即刻血药浓度为84mg/L,三种给药途径的血清半减期相仿,为1.7~1.9h。头孢唑肟组织分布良好,静脉推注1g后,胆囊、胆汁、眼房水、痰
可的松的药代动力学
可的松是肾上腺皮质分泌的糖皮质激素,本身无活性,需在体内代谢成氢化可的松才起作用。亦有一定程度的盐皮质激素样作用。醋酸可的松口服易从胃肠道吸收,约1h血浓达峰值。迅速在肝内代谢成有活性的氢化可的松,其血浆生物学作用的t1/2仅30min。肌注其混悬剂则吸收较口服慢得多。
霉酚酸酯的药动力学
口服后迅速大量吸收,并代谢为活性成份 MPA 。口服平均生物利用度为静脉注射的 94%( 根据 MPA 曲线下面积 ) ,口服后在循环中测不出 MMF 。肾移植病人口服 MMF ,其吸收不受食物影响,但进食后血 MPA 峰值将降低 40% 。由于肠肝循环作用,服药后 6-12 小时将出现第二个血浆
硫酸片剂的动力学作用
新霉素口服很少吸收(约3%),但长期口服较大剂量,肠粘膜有溃疡或炎症时仍可吸收相当量,特别在肾功能减退时血药浓度可显著增高。口服后大部分不经变化随粪便排出。
利福平的药代动力学
利福平口服吸收良好,服药后1.5~4小时血药浓度达峰值。成人一次口服600mg后血药峰浓度(Cmax)为7~9mg/L,6个月至5岁小儿一次口服10mg/kg,血药峰浓度(Cmax)为11mg/L。该品在大部分组织和体液中分布良好,包括脑脊液,当脑膜有炎症时脑脊液内药物浓度增加;在唾液中亦可达有效治
动力学同位素效应
动力学同位素效应( Kinetic Isotope Effect ,KIE),由于同位素的存在而造成反应速率上的差别,数值上等于较轻同位素参加反应的速率常数与较重同位素参加反应的速率常数的比值,动力学同位素效应和反应物的 ΔG ≠有关。同一元素的同位素具有相同的电子构型,因而具有相似的化学性质 。但
酶促反应动力学(四)
很多药物都是酶的竞争性抑制剂。例如磺胺药与对氨基苯甲酸具有类似的结构(如图2-15),而对氨基苯甲酸、二氢喋呤及谷氨酸是某些细菌合成二氢叶酸的原料,后者能转变为四氢叶酸,它是细菌合成核酸不可缺少的辅酶。由于磺胺药是二氢叶酸合成酶的竞争性抑制剂,进而减少菌体内四氢叶酸的合成,使核酸合成障碍,导致细