解析一维系统中长程有序手性产生新机制

手性结构及其调控方式与生命现象密切相关,理解和控制手性的形成对基础研究以及工业应用都具有举足轻重的作用,然而如何探究生命分子的整体单一手性起源仍然是本领域的研究热点和难点。柱状相作为典型的一维结构,存在于许多π共轭化合物的1D维半导体中,它们可用于光收集和光发射、传感器、离子导体等,将这些特征与手性相结合可以增强它们作为功能材料的多样性。然而,常规意义上的柱状相由熔融的柔性链把液晶柱相互隔离,因此实际上是一个一维的系统。传统意义上,由于螺旋反转缺陷的存在,在一维的系统中是不可能维持手性的长程有序。因此,截止目前为止,对于柱相结构中长程均一手性的形成机理以及构筑方式的研究还十分有限。 针对上述科学问题,西安交通大学刘峰教授/Goran Ungar教授团队与河南工业大学、罗马尼亚科学院、南京大学以及英国谢菲尔德大学的研究人员合作,借助于上海同步辐射光源、英国钻石同步辐射光源以及我校分析测试中心等仪器设备,合成并研究了一系列具有......阅读全文

X射线散射

美国物理学家康普顿(Arthur Holy Compton,1892~1962)在大学生时期就跟随其兄卡尔·康普顿开始X射线的研究。后来他到了卡文迪什实验室,主要从事g射线的实验研究。他用精湛的实验技术精确测定了γ射线的波长,并确定γ射线在散射后波长会变得更长。但他没能从理论上解释这个实验事实。他到

小角X射线散射仪简介

  小角X射线散射仪是一种用于物理学、化学领域的分析仪器,于2013年1月12日启用。  技术指标  最大功率:40kV、50mA;小角测量范围(q):0.07°~5°;大角测量范围(q):0.07°~40°。  主要功能  1)分散体系中粒子的形貌、尺寸、孔结构以及尺寸分布等;  2)高分子聚合物

小角X射线散射的简介

  小角X射线散射(SAXS)是指当X射线透过试样时,在靠近原光束2°~5°的小角度范围内发生的散射现象。早在1930年,Krishnamurti就观察到炭粉、炭黑和各种亚微观大小的微粒在X射线透射光附近出现连续散射现象。  小角X射线散射被越来越多地应用于材料微观结构研究,其研究趋势逐年增长。小角

X射线荧光光谱仪X射线散射的介绍

  除光电吸收外,入射光子还可与原子碰撞,在各个方向上发生散射。散射作用分为两种,即相干散射和非相干散射。  相干散射:当X射线照射到样品上时,X射线便与样品中的原子相互作用,带电的电子和原子核就跟随着X射线电磁波的周期变化的电磁场而振动。因原子核的质量比电子大得多,原子核的振动可忽略不计,主要是原

关于小角X射线散射的简介

  小角X射线散射是一种区别于X射线大角(2θ从5 ~165 )衍射的结构分析方法。一种区别于X射线大角(2θ从5 ~165 )衍射的结构分析方法。利用X射线照射样品,相应的散射角2θ小(5 ~7 ),即为X射线小角散射。用于分析特大晶胞物质的结构分析以及测定粒度在几十个纳米以下超细粉末粒子(或固体

简述小角X射线散射基本理论

  小角X 射线散射效益来自于物质内部1~100nm 量级范围内电子密度的起伏。对于完全均匀的物质,其散射强度为零。当出现第二相或不均匀区时才会发生散射,且散射角度随着散射体尺寸的增大而减小。  小角X射线散射强度受粒子尺寸、形状、分散情况、取向及电子密度分布等的影响。对于稀疏分散、随机取向、大小和

关于小角X射线散射的性质介绍

  一种区别于X射线大角(2θ从5 ~165 )衍射的结构分析方法。利用X射线照射样品,相应的散射角2θ小(5 ~7 ),即为X射线小角散射。用于分析特大晶胞物质的结构分析以及测定粒度在几十个纳米以下超细粉末粒子(或固体物质中的超细空穴)的大小、形状及分布。对于高分子材料,可测量高分子粒子或空隙大小

X-射线显微镜的功能结构特点

X 射线显微镜是X 射线成像术的一种,也是显微成像技术,即将微观的、肉眼无法分辨看出的结构、图形放大成像以便观察研究的器械。X 射线成像的衬度原理、设备的构造与主要组成部件( 如X射线源、探测器等),但主要是从宏观物体的成像( 如人体器管的医学成像、机械制品的缺陷探伤、机场车站的安全检查等) 出发的

中日团队利用X射线散射法获得硼酸钠盐的缔合结构

  大量研究表明,硼酸根离子的水合及缔合作用对于理解和认识硼酸盐矿物的沉积和结晶过程、硼酸盐溶液木材防腐与阻燃能力以及硼酸-压水核反应堆(PWRs)性能等具有重要作用。然而,关于硼酸根离子在原子/分子水平上的水合及缔合信息尚无明确的报道。   青海盐湖所盐湖资源化学实验室溶液结构课题组与日本

Bruker拓展其小角X射线散射产品进行高通量纳米结构分析

Bruker拓展其小角X射线散射(SAXS)产品组合进行高通量纳米结构分析   佛罗里达州奥兰多,2012年3月12日——在Pittcon 2012上,Bruker公司宣布其X-ray衍射和散射产品组合进行高通量纳米分析的战略扩张,此发展策略基于Bruker公司最近收购了一项Krat

关于小角X射线散射的重要性

  小角X射线散射技术是研究材料亚微观内部结构的重要方法,由于其独特的优点,可以用来进行金属和非金属纳米粉末、胶体溶液、生物大分子以及各种材料中所形成的纳米级微孔、GP区和沉淀析出相尺寸分布的测定以及非晶合金加热过程的晶化和相分离等研究。小角X射线散射技术在提高和改进材料性能方面起着重要作用,必将成

X射线在物质中的散射相关介绍

  X射线在物质中的散射现象,可主要分为两种形式:  (1)不变质散射(弹性散射,瑞利散射),入射X射线波长不发生变化;  (2)变质散射(非弹性,康普顿散射),入射X射线波长发生变化。  原子周围的核外电子,越内层电子与原子核结合的越紧密。光子与内层电子发生碰撞,无法撞动内层电子,固本身的频率波长

化合物做x射线单晶衍射能够获得什么结构信息

晶体的晶格栏栅结构是X射线发生衍射现象的理想条件.无机晶体、混晶体、金属晶体、合金体、共熔体、有机化合物晶体、高分子晶体、生物大分子晶体等晶体类物质以及上述物质的部分晶体、粉末微晶体等都是X射线衍射研究的当然对象.有机化合物,已经有相当一部分被制备成晶体进行了X射线衍射研究,但还远不是全部.有些有机

X射线管的结构

  固定阳极X射线管是常用X射线管中最简单的一种,其结构由阳极、阴极和固定两极并保持玻璃管内高真空的玻璃壳等三部分组成。  阳极由阳极头、阳极帽、玻璃圈和阳极柄构成。阳极的主要作用使由阳极头的靶面(一般选用钨靶)阻挡高速运动的电子流而产生X射线,并将由此产生的热量辐射或者通过阳极柄传导出去,同时也吸

X射线显微镜原理

  X 射线显微镜是X 射线成像术的一种,也是显微成像技术,即将微观的、肉眼无法分辨看出的结构、图形放大成像以便观察研究的器械。X 射线成像的衬度原理、设备的构造与主要组成部件( 如X射线源、探测器等),但主要是从宏观物体的成像( 如人体器管的医学成像、机械制品的缺陷探伤、机场车站的安全检查等) 出

偏光显微镜的结构特点

装置要求1、光源最好采用单色光,因为光的速度,折射率,和干涉现象由于波长的不同而有差异。一般镜检可使用普通光。2.物镜:应使用无应消色差物镜,因复消色差和半复消色差物镜本身常发生偏振光。3、目镜要带有十字线的目镜。4、聚光镜为了取得平行偏光,应使用能推出上透镜的摇出式聚光镜。5、伯特兰透镜聚光镜光路

偏光显微镜的结构特点

装置要求1、光源最好采用单色光,因为光的速度,折射率,和干涉现象由于波长的不同而有差异。一般镜检可使用普通光。2.物镜:应使用无应消色差物镜,因复消色差和半复消色差物镜本身常发生偏振光。3、目镜要带有十字线的目镜。4、聚光镜为了取得平行偏光,应使用能推出上透镜的摇出式聚光镜。5、伯特兰透镜聚光镜光路

偏光显微镜的基本结构

1、光源最好采用单色光,因为光的速度,折射率,和干涉现象由于波长的不同而有差异。一般镜检可使用普通光。2.物镜:应使用无应消色差物镜,因复消色差和半复消色差物镜本身常发生偏振光。3、目镜要带有十字线的目镜。4、聚光镜为了取得平行偏光,应使用能推出上透镜的摇出式聚光镜。5、伯特兰透镜聚光镜光路中的辅助

小角X射线散射技术测定离聚体的介绍

  离聚体是指共聚物中含有少量离子的聚合物。由于高分子链存在着离子化的侧基,可形成离子聚合体,从而使此类聚合物具有独特的结构和性能。小角X射线散射技术还可用于嵌段共聚物、胶体高分子溶液以及生物大分子等研究领域,用来测量分子量、粒子旋转半径以及形变和取向等。

小角X射线散射技术测定纳米颗粒的介绍

  小角X射线散射技术被广泛用来测定纳米粉末的粒度分布,其粒度分析结果所反映的既非晶粒亦非团粒,而是一次颗粒的尺寸。在测定中参与散射的颗粒数一般高达数亿个,因此,在统计上有充分的代表性。  通过对Guinier曲线低角区域线性部分的拟合,得到试样中氧化铝颗粒的旋转半径约为6nm,表明在无机纳米杂化薄

生物大分子X射线小角散射实验指南

    导读:基于同步辐射的X射线小角散射实验可以实现高通量以及更高的分辨率和信噪比。本文简单介绍了生物大分子小角散射(BioSAXS)的数据收集策略以及样品准备要求,看完这篇就可以准备样品直接去BL19U2收集小角数据了!BioSAXS的目标    生物分子的小角X射线散射(以下简称生物小角,Bi

X射线荧光光谱仪X射线光管结构

  常规X射线光管主要采用端窗和侧窗两种设计。普通X射线光管一般由真空玻璃管、阴极灯丝、阳极靶、铍窗以及聚焦栅极组成,并利用高压电缆与高压发生器相接,同时高功率光管还需要配有冷却系统。侧窗和端窗X射线光管结构如图6和图7所示。  当电流流经X射线光管灯丝线圈时,引起阴极灯丝发热发光,并向四周发射电子

X射线衍射仪的结构

X射线衍射仪的结构X射线衍射仪由X射线发生器、测角仪、样品台、检测器、测量记录系统、计算机系统等构成(如下图所示)。总体可分为X射线发生系统、测角及探测系统、数据记录与处理系统。

X射线测厚仪的基本结构

、放射源基本结构    放射源主要由X射线管、阴极丝、变压器、高压倍压电路组成。X射线管是密封真空的,它的阴极是钨丝,阳极是钨制成的目标靶。当阴极通电时,阴极钨丝由于发热而产生热电子,热电子在高压作用下产生动能,并以很高的加速度射向阳极目标靶形成管电流。当热电子撞到阳极靶时.它的动能就转换成热和X射

简介X射线管的结构

  固定阳极X射线管是常用X射线管中最简单的一种,其结构由阳极、阴极和固定两极并保持玻璃管内高真空的玻璃壳等三部分组成。  阳极由阳极头、阳极帽、玻璃圈和阳极柄构成。阳极的主要作用使由阳极头的靶面(一般选用钨靶)阻挡高速运动的电子流而产生X射线,并将由此产生的热量辐射或者通过阳极柄传导出去,同时也吸

X射线显微镜的简介

  X 射线显微镜是X 射线成像术的一种,也是显微成像技术,即将微观的、肉眼无法分辨看出的结构、图形放大成像以便观察研究的器械。X 射线成像的衬度原理、设备的构造与主要组成部件( 如X射线源、探测器等),但主要是从宏观物体的成像( 如人体器管的医学成像、机械制品的缺陷探伤、机场车站的安全检查等) 出

X-射线显微镜的概念

X 射线显微镜是X 射线成像术的一种,也是显微成像技术,即将微观的、肉眼无法分辨看出的结构、图形放大成像以便观察研究的器械。X 射线成像的衬度原理、设备的构造与主要组成部件( 如X射线源、探测器等),但主要是从宏观物体的成像( 如人体器管的医学成像、机械制品的缺陷探伤、机场车站的安全检查等) 出发的

X射线显微镜的定义

  X 射线显微镜是X 射线成像术的一种,也是显微成像技术,即将微观的、肉眼无法分辨看出的结构、图形放大成像以便观察研究的器械。X 射线成像的衬度原理、设备的构造与主要组成部件( 如X射线源、探测器等),但主要是从宏观物体的成像( 如人体器管的医学成像、机械制品的缺陷探伤、机场车站的安全检查等) 出

X射线CT显微镜用于风机叶片的结构缺陷研究

  毫无疑问,风是一种潜能巨大的新能源,在数秒钟内就能发出一千万马力(750万千瓦)的功率。风很早就被人类利用,比如用风车来抽水、磨面等,而现在风能主要被用作风力发电,通过风力带动风机叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。由于风力发电非常环保,无需使用任何燃料,也不会产生辐射或空

小角X射线散射技术测定非晶合金的介绍

  非晶合金也称金属玻璃,它是急冷得到的亚稳定合金,在加热过程中会产生一系列的转变,逐渐由亚稳态转变到稳定态。在这个过程中会发生相分离以及晶化过程。已有许多学者利用小角X射线散射技术来研究非晶合金中的这些转变。  用原位小角X 射线散射研究了块体非晶合金Zr55Cu30Al10Ni5的退火行为。研究