小角X射线散射技术测定纳米颗粒的介绍
小角X射线散射技术被广泛用来测定纳米粉末的粒度分布,其粒度分析结果所反映的既非晶粒亦非团粒,而是一次颗粒的尺寸。在测定中参与散射的颗粒数一般高达数亿个,因此,在统计上有充分的代表性。 通过对Guinier曲线低角区域线性部分的拟合,得到试样中氧化铝颗粒的旋转半径约为6nm,表明在无机纳米杂化薄膜体系中,纳米颗粒未发生团聚现象。通过观察Porod曲线发现,随散射矢量h值的增大,曲线趋于水平直线。根据小角X射线散射理论中的Porod定律可知,该复合薄膜中纳米颗粒与基体间的界面明确,说明薄膜中的PI分子链与无机纳米颗粒间并未发生相互扩散、渗透以及缠结等现象。无机纳米颗粒与有机分子链主要是通过化学键锚定在一起,此界面结构与经典的有机与无机相结合的化学键理论相一致。......阅读全文
小角X射线散射技术测定纳米颗粒的介绍
小角X射线散射技术被广泛用来测定纳米粉末的粒度分布,其粒度分析结果所反映的既非晶粒亦非团粒,而是一次颗粒的尺寸。在测定中参与散射的颗粒数一般高达数亿个,因此,在统计上有充分的代表性。 通过对Guinier曲线低角区域线性部分的拟合,得到试样中氧化铝颗粒的旋转半径约为6nm,表明在无机纳米杂化薄
小角X射线散射技术测定离聚体的介绍
离聚体是指共聚物中含有少量离子的聚合物。由于高分子链存在着离子化的侧基,可形成离子聚合体,从而使此类聚合物具有独特的结构和性能。小角X射线散射技术还可用于嵌段共聚物、胶体高分子溶液以及生物大分子等研究领域,用来测量分子量、粒子旋转半径以及形变和取向等。
小角X射线散射技术测定非晶合金的介绍
非晶合金也称金属玻璃,它是急冷得到的亚稳定合金,在加热过程中会产生一系列的转变,逐渐由亚稳态转变到稳定态。在这个过程中会发生相分离以及晶化过程。已有许多学者利用小角X射线散射技术来研究非晶合金中的这些转变。 用原位小角X 射线散射研究了块体非晶合金Zr55Cu30Al10Ni5的退火行为。研究
小角X射线散射技术测定金属的缺陷的介绍
金属经辐照或从较高温度淬火产生空位聚集,会引起相当强的小角散射。由于粒子体系和孔洞体系是互补体系,二者产生的散射是相同的。在306~319℃退火空洞会被部分地退火消除,旋转半径迅速增大;而在306℃之前,空洞则非常稳定。
小角X射线散射技术测定合金中的析出相介绍
早在1938年,Guinier就已经用小角X射线散射技术研究合金中的非均匀区(现称作GP区),揭示了一些亚稳分解产物。如今小角X射线散射技术被越来越多地用于合金时效过程的研究,从而进行相变动力学研究等。 在形核阶段,析出相半径变化很小;在长大过程中,析出相基本满足抛物线长大规律;在粗化阶段,析
小角X射线散射的简介
小角X射线散射(SAXS)是指当X射线透过试样时,在靠近原光束2°~5°的小角度范围内发生的散射现象。早在1930年,Krishnamurti就观察到炭粉、炭黑和各种亚微观大小的微粒在X射线透射光附近出现连续散射现象。 小角X射线散射被越来越多地应用于材料微观结构研究,其研究趋势逐年增长。小角
小角X射线散射技术测定结晶聚合物的介绍
所谓结晶聚合物,实际都是部分结晶,其结晶度一般在50%以下。小角X射线散射研究发现,高结晶度的线性聚乙烯、聚甲醛和聚氧化乙烯等聚合物的散射曲线尾部服从Porod定理,表明近似于理想两相结构。但是,大多结晶度较低聚合物的散射曲线显示出尾部迅速降低,偏离Porod定理,表明晶相与非晶相之间存在过渡层
关于小角X射线散射的性质介绍
一种区别于X射线大角(2θ从5 ~165 )衍射的结构分析方法。利用X射线照射样品,相应的散射角2θ小(5 ~7 ),即为X射线小角散射。用于分析特大晶胞物质的结构分析以及测定粒度在几十个纳米以下超细粉末粒子(或固体物质中的超细空穴)的大小、形状及分布。对于高分子材料,可测量高分子粒子或空隙大小
小角X射线散射仪简介
小角X射线散射仪是一种用于物理学、化学领域的分析仪器,于2013年1月12日启用。 技术指标 最大功率:40kV、50mA;小角测量范围(q):0.07°~5°;大角测量范围(q):0.07°~40°。 主要功能 1)分散体系中粒子的形貌、尺寸、孔结构以及尺寸分布等; 2)高分子聚合物
关于小角X射线散射的简介
小角X射线散射是一种区别于X射线大角(2θ从5 ~165 )衍射的结构分析方法。一种区别于X射线大角(2θ从5 ~165 )衍射的结构分析方法。利用X射线照射样品,相应的散射角2θ小(5 ~7 ),即为X射线小角散射。用于分析特大晶胞物质的结构分析以及测定粒度在几十个纳米以下超细粉末粒子(或固体
简述小角X射线散射基本理论
小角X 射线散射效益来自于物质内部1~100nm 量级范围内电子密度的起伏。对于完全均匀的物质,其散射强度为零。当出现第二相或不均匀区时才会发生散射,且散射角度随着散射体尺寸的增大而减小。 小角X射线散射强度受粒子尺寸、形状、分散情况、取向及电子密度分布等的影响。对于稀疏分散、随机取向、大小和
关于小角X射线散射的重要性
小角X射线散射技术是研究材料亚微观内部结构的重要方法,由于其独特的优点,可以用来进行金属和非金属纳米粉末、胶体溶液、生物大分子以及各种材料中所形成的纳米级微孔、GP区和沉淀析出相尺寸分布的测定以及非晶合金加热过程的晶化和相分离等研究。小角X射线散射技术在提高和改进材料性能方面起着重要作用,必将成
Bruker拓展其小角X射线散射产品进行高通量纳米结构分析
Bruker拓展其小角X射线散射(SAXS)产品组合进行高通量纳米结构分析 佛罗里达州奥兰多,2012年3月12日——在Pittcon 2012上,Bruker公司宣布其X-ray衍射和散射产品组合进行高通量纳米分析的战略扩张,此发展策略基于Bruker公司最近收购了一项Krat
生物大分子X射线小角散射实验指南
导读:基于同步辐射的X射线小角散射实验可以实现高通量以及更高的分辨率和信噪比。本文简单介绍了生物大分子小角散射(BioSAXS)的数据收集策略以及样品准备要求,看完这篇就可以准备样品直接去BL19U2收集小角数据了!BioSAXS的目标 生物分子的小角X射线散射(以下简称生物小角,Bi
小角X射线散射(SAXS)检测时对样品的要求
1、粉末样品:须充分研磨,需0.2克左右; 2、片状样品:样品表面平整,可折叠制样,最佳厚度为1mm; 3、液体样品:浓度极低的稀溶液,大约需要50μL,1*20 mm2; 4、纤维样品:一束梳理整齐的纤维,长度5 cm, 纤维束直径2mm; 不符合以上送样要求,不能保证数据的准确性。
北京同步辐射装置小角X射线散射技术研究汞污染取得进展
近年来,北京同步辐射装置小角X射线散射(SAXS)站在国家自然科学基金、国家重大维修改造项目、北京物质科学大型仪器区域中心等多方经费的资助下,经过几年的努力,从仪器设备、探测技术、数据分析到科学研究等多方面都取得显著进步,现已发展成为一个性能先进的物质纳米尺度结构研究表征平台,并在纳米材料、聚合
X射线散射
美国物理学家康普顿(Arthur Holy Compton,1892~1962)在大学生时期就跟随其兄卡尔·康普顿开始X射线的研究。后来他到了卡文迪什实验室,主要从事g射线的实验研究。他用精湛的实验技术精确测定了γ射线的波长,并确定γ射线在散射后波长会变得更长。但他没能从理论上解释这个实验事实。他到
概述小角X射线散射在高分子材料中的应用
在天然的和人工合成的高聚物中,普遍存在小角X射线散射现象,并有许多不同的特征。小角X射线散射在高分子中的应用主要包括以下几个方面: ①通过Guinier散射测定高分子胶中胶粒的形状、粒度以及粒度分布等; ②通过Guinier散射研究结晶高分子中的晶粒、共混高分子中的微区(包括分散相和连续相)
陕西师范大学小角X射线散射装置公开招标公告
项目概况 小角X射线散射装置 招标项目的潜在投标人应在西安高新区高新四路1号高科广场A座1001室获取招标文件,并于2023年01月30日 09点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:SZT2022-Q-SN-ZY-ZC-HW-0063 项目名称:小角X射线散射
X射线荧光光谱仪X射线散射的介绍
除光电吸收外,入射光子还可与原子碰撞,在各个方向上发生散射。散射作用分为两种,即相干散射和非相干散射。 相干散射:当X射线照射到样品上时,X射线便与样品中的原子相互作用,带电的电子和原子核就跟随着X射线电磁波的周期变化的电磁场而振动。因原子核的质量比电子大得多,原子核的振动可忽略不计,主要是原
纳米药物的表征和质量控制(一)
与传统药物相比,纳米药物具有独特的优势,全面、科学、合理地表征纳米药物,制订合适的药品质控指标,建立相应的检测方法是一项非常重要的工作。本文讨论了其中的两个重要参数:粒度及粒度分布、药物载体的包封率以及相应的检测方法。 纳米微粒的粒子尺寸已接近光的波长,纳米微粒有大量的界面或自由表面,表面
液体核磁与小角度X射线散射刻画CTCF多点识别DNA动态特性
中国科学技术大学生命科学学院施蕴渝院士/吴季辉教授团队的阮科副教授和张志勇教授利用液态核磁共振结合小角度X射线散射等技术,在对人源多功能转录因子CTCF的结构与功能研究中取得重要进展。相关成果以“Dynamic Nature of CTCF Tandem 11 Zinc Fingers in M
合肥研究院提出高分子片晶小角X射线散射新机制
众所周知,高分子在结晶时形成折叠链片晶并进一步组装成片晶簇和球晶。片晶厚度和长周期决定着高分子的热力学性质,是结晶高分子的两个重要的物理量。小角X射线散射是探测这些纳米尺寸有序结构的有力武器。长期以来,人们认为小角X射线散射来自于片晶簇内电子密度的相关性,并提出利用相关函数来测定片晶厚度。近日,
中国学者推翻小角X射线散射基础理论-震惊全球晶体界!
众所周知,高分子在结晶时形成折叠链片晶并进一步组装成片晶簇和球晶。片晶厚度和长周期决定着高分子的热力学性质,是结晶高分子的两个重要的物理量。小角X射线散射是探测这些纳米尺寸有序结构的有力武器。长期以来,人们认为小角X射线散射来自于片晶簇内电子密度的相关性,并提出利用相关函数来测定片晶厚度。近日,
X射线投射检测技术的检测方法
X射线检测的方法很多,以下简要介绍三种: X射线小角散射 当X射线照射到试样上时,如果试样内部存在纳米尺寸的密度不均匀区,则会在入射束周围的小角度区域内出现散射X射线,这种现象称为X射线小角散射或小角X射线散射。根据电磁波散射的反比定律,相对于波长来说,散射体的有效尺寸越大则散射角越小。因此
X射线投射检测技术的原理及检测方法
原理 在X-Ray检测的过程中, X-Ray穿过待检样品,然后在图像探测器(现在大多使用X-Ray图像增强器)上形成一个放大的X光图。该图像的质量主要由分辨率及对比度决定。 成像系统的分辨率(清晰度) 决定于X射线源焦斑的大小、X光路的几何放大率和探测器像素大小。微焦点X光管的焦斑可小到几个
X射线在物质中的散射相关介绍
X射线在物质中的散射现象,可主要分为两种形式: (1)不变质散射(弹性散射,瑞利散射),入射X射线波长不发生变化; (2)变质散射(非弹性,康普顿散射),入射X射线波长发生变化。 原子周围的核外电子,越内层电子与原子核结合的越紧密。光子与内层电子发生碰撞,无法撞动内层电子,固本身的频率波长
材料物相结构分析
常用的物相分析方法有X射线衍射分析、激光拉曼分析、傅里叶红外分析以及微区电子衍射分析。X射线衍射分析XRD物相分析是基于多晶样品对X射线的衍射效应,对样品中各组分的存在形态进行分析。测定结晶情况,晶相,晶体结构及成键状态等等。 可以确定各种晶态组分的结构和含量。灵敏度较低,一般只能测定样品中含量在1