药典委:原子荧光光谱法标准草案公示含3种测定方法

近日,国家药典委拟制定《中国药典》原子荧光光谱法标准,发布并公示“原子荧光光谱法标准草案”(以下简称《草案》)。 原子荧光光谱法是基于蒸气相中待测元素的基态原子吸收光源辐射后,激发出具有荧光的特征谱线,根据荧光强度进行定量分析的一种仪器分析方法。一般通过比较对照品溶液和供试品溶液中待测元素的荧光强度,计算供试品中该元素的含量。 《草案》的方法适用于可形成氢化物、原子蒸气态或挥发性化合物的元素,如砷、汞、硒、锡、铅、铋、镉、锗、锑、蹄、锌等元素的微量至痕量检测。 《草案》的内容包括:对仪器的一般要求(激发光源、原子化器、蒸气发生系统、光学系统、检测系统)、干扰和校正、供试品溶液的制备、测定法(单点法、标准曲线法、标准加入法)、检测限及定量限等。《草案》对于中药材、中 成药、化学药品及辅料中部分重金属元素的限度检查及含量测定均有适用性。 以下是通知原文:关于原子荧光光谱法标准草案的公示 我委拟制定《中国药典》原子荧光光......阅读全文

原子荧光光谱仪在多领域应用的相关标准

     原子荧光光谱仪也叫做“原子荧光光度计”,是拥有我国自主知识产权的光谱仪器。它操作简单性价比高,被广泛应用的多个行业领域。近日,北京市下发的《北京市2020-2021 年秋冬季大气污染综合治理攻坚行动方案》中要求在2020年12月底以前完成以石化、化工、家具制造、电子、化学品制造、工业涂装

原子荧光光谱仪在多领域应用的相关标准

   原子荧光光谱仪也叫做“原子荧光光度计”,是拥有我国自主知识产权的光谱仪器。它操作简单性价比高,被广泛应用的多个行业领域。近日,北京市下发的《北京市2020-2021 年秋冬季大气污染综合治理攻坚行动方案》中要求在2020年12月底以前完成以石化、化工、家具制造、电子、化学品制造、工业涂装等重金

原子荧光光谱详解

  原子荧光光谱法(AFS)是一种痕量分析技术,是原子光谱法中的一个重要分支。是介于原子发射光谱法(AES)和原子吸收光谱法(AAS)之间的光谱分析技术 ,所用仪器及操作技术与原子吸收光谱法相近。  (一)AFS的发展历程  •1859年开始原子荧光理论的研究  •1902年首次观察到钠的原子荧光 

原子荧光光谱介绍

原子荧光光谱是1964年以后发展起来的分析方法。原子荧光光谱法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。但所用仪器与原子吸收光谱法相近。原子荧光光谱分析法具有很高的灵敏度,校正曲线的线性范围宽,能进行多元素同时测定。 原子荧光光谱是介于原子发射光谱和原子吸收光谱之间的光谱分析

原子荧光光谱仪原子荧光分类(三)

  敏化原子荧光  激发原子通过碰撞将其激发能转移给另一个原子使其激发,后者再以辐射方式去活化而发射荧光,此种荧光称为敏化原子荧光。火焰原子化器中的原子浓度很低,主要以非辐射方式去活化,因此观察不到敏化原子荧光。

原子荧光光谱仪原子荧光分类(一)

  当自由原子吸收了特征波长的辐射之后被激发到较高能态,接着又以辐射形式去活化,就可以观察到原子荧光。原子荧光可分为三类:共振原子荧光、非共振原子荧光与敏化原子荧光。  共振原子荧光  原子吸收辐射受激后再发射相同波长的辐射,产生共振原子荧光。若原子经热激发处于亚稳态,再吸收辐射进一步激发,然后再发

原子荧光光谱仪原子荧光分类(二)

  非共振原子荧光  当激发原子的辐射波长与受激原子发射的荧光波长不相同时,产生非共振原子荧光。非共振原子荧光包括直跃线荧光、阶跃线荧光与反斯托克斯荧光,  直跃线荧光是激发态原子直接跃迁到高于基态的亚稳态时所发射的荧光,如Pb405.78nm。只有基态是多重态时,才能产生直跃线荧光。阶跃线荧光是激

原子荧光Hg标准溶液

汞Hg汞储备液浓度(0.01mg/L),优级纯的盐酸,去离子水(电阻率≥10M欧姆)序号浓盐酸(ml)汞储备液浓度(0.01mg/L)体积ml定容体积ml溶液浓度ug/LStd0201000Std1211000.1Std2221000.2Std3241000.4Std4281000.8Std5210

原子荧光光谱仪

原子荧光光度计利用惰性气体氩气作载气,将气态氢化物和过量氢气与载气混合后,导入加热的原子化装置,氢气和氩气在特制火焰装置中燃烧加热,氢化物受热以后迅速分解,被测元素离解为基态原子蒸气,其基态原子的量比单纯加热砷、锑、铋、锡、硒、碲、铅、锗等元素生成的基态原子高几个数量级。

原子荧光光谱仪

原子荧光光度计利用惰性气体氩气作载气,将气态氢化物和过量氢气与载气混合后,导入加热的原子化装置,氢气和氩气在特制火焰装置中燃烧加热,氢化物受热以后迅速分解,被测元素离解为基态原子蒸气,其基态原子的量比单纯加热砷、锑、铋、锡、硒、碲、铅、锗等元素生成的基态原子高几个数量级。

原子荧光光谱的概念

原子荧光光谱(AFS):典型原子荧光检测过程是以氢化物/冷蒸气发生方式实现样品的导入,氩氢扩散火焰原子化器实现被测元素的原子化,自由原子被空心阴极灯激发后发射的原子荧光,以无色散光路被 光 电 倍 增 管 接 收,获 得 原 子 荧 光 信 号。理 论 上,AFS兼具AES和AAS的优点,同时也克服

原子荧光光谱的特点

理 论 上,AFS兼具AES和AAS的优点,同时也克服了两者的不足,但是,由于AFS存在散射光干扰及荧光猝 灭 严 重 等 固 有 缺陷,使得该方法对激发光源和原子化器有较高的要求。

原子荧光光谱的概念

原子荧光光谱是1964年以后发展起来的分析方法。原子荧光光谱法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。但所用仪器与原子吸收光谱法相近。原子荧光光谱分析法具有很高的灵敏度,校正曲线的线性范围宽,能进行多元素同时测定。 原子荧光光谱是介于原子发射光谱和原子吸收光谱之间的光谱分析

原子荧光光谱仪

原子荧光光度计利用惰性气体氩气作载气,将气态氢化物和过量氢气与载气混合后,导入加热的原子化装置,氢气和氩气在特制火焰装置中燃烧加热,氢化物受热以后迅速分解,被测元素离解为基态原子蒸气,其基态原子的量比单纯加热砷、锑、铋、锡、硒、碲、铅、锗等元素生成的基态原子高几个数量级。 利用原子荧光谱线的波长

原子荧光光谱法

方法提要在一定酸度下,溴酸钾与溴化钾反应生成溴,可将试样消解,使所含汞全部转化为二价无机汞,用盐酸羟胺还原过剩的氧化剂,再用氯化亚锡将二价汞还原为单质汞,用氩气作载气,将其引入原子荧光光谱仪测量荧光强度。方法最低检测质量为0.5ng。取5mL水样测定,检测下限为0.1μg/L。仪器和装置无色散原子荧

原子荧光光谱的现状

        根据文献报道,HG-AFS主要在中药中砷、汞、硒、镉、铅、锑和锗等金属元素分析中得到了应用,但由于许多试样中金属元素含量较低,且基体较为复杂,还需要进一步提高检测方法的灵敏度和重现性;而对中药中铋、锡和碲等元素的分析尚未见报道,其应用技术还需进一步研究。         样品的污染和

原子荧光光谱的分类

原子荧光可分为 3类:即共振荧光、非共振荧光和敏化荧光,其中以共振原子荧光最强,在分析中应用最广。共振荧光是所发射的荧光和吸收的辐射波长相同。只有当基态是单一态,不存在中间能级,才能产生共振荧光。非共振荧光是激发态原子发射的荧光波长和吸收的辐射波长不相同。非共振荧光又可分为直跃线荧光、阶跃线荧光和反

原子荧光光谱的分类

原子荧光可分为 3类:即共振荧光、非共振荧光和敏化荧光,其中以共振原子荧光最强,在分析中应用最广。共振荧光是所发射的荧光和吸收的辐射波长相同。只有当基态是单一态,不存在中间能级,才能产生共振荧光。非共振荧光是激发态原子发射的荧光波长和吸收的辐射波长不相同。非共振荧光又可分为直跃线荧光、阶跃线荧光和反

什么是原子荧光光谱

原子荧光光谱(AFS):典型原子荧光检测过程是以氢化物/冷蒸气发生方式实现样品的导入,氩氢扩散火焰原子化器实现被测元素的原子化,自由原子被空心阴极灯激发后发射的原子荧光,以无色散光路被 光 电 倍 增 管 接 收,获 得 原 子 荧 光 信 号。理 论 上,AFS兼具AES和AAS的优点,同时也克服

荧光光谱的原子荧光光谱的分类

原子荧光可分为 3类:即共振荧光、非共振荧光和敏化荧光,其中以共振原子荧光最强,在分析中应用最广。共振荧光是所发射的荧光和吸收的辐射波长相同。只有当基态是单一态,不存在中间能级,才能产生共振荧光。非共振荧光是激发态原子发射的荧光波长和吸收的辐射波长不相同。非共振荧光又可分为直跃线荧光、阶跃线荧光和反

原子荧光光谱法测定牡蛎中的镉含量原子荧光谱仪

利用HN03-HCl04混合酸消解样品,采用氢化物发生-原子荧光光谱法测定牡蛎中镉的含量。在优化的仪器工作条件下,镉的质量浓度在0.20~1.50μg/L范围内与荧光强度呈良好的线性关系,线性相关系数为0.9992,检出限为0.10μg/L,测定结果的相对标准偏差为4.48%(n=12),加标回收率

原子荧光光谱仪-原子荧光光谱仪的光源种类、工作原理

激发光源是原子荧光光谱仪的主要组成部分。在一定条件下荧光强度与激发光源的发射强度成正比,因此一个理想的光源应当具有下列条件:①发射强度高,无自吸②稳定性好,噪声小③发射的谱线窄且纯度高:④价格便宜且有足够长的使用寿命,⑤操作简便,不需复杂的电源,③适用于各种元素分析,即能制造出各种元素的同类型的灯。

原子荧光光谱仪和原子荧光光度计

原子荧光光谱仪及原子荧光光度计利用惰性气体氩气作载气,将气态氢化物和过量氢气与载气混合后,导入加热的原子化装置,氢气和氩气在特制火焰装置中燃烧加热,氢化物受热以后迅速分解,被测元素离解为基态原子蒸气,其基态原子的量比单纯加热砷、锑、铋、锡、硒、碲、铅、锗等元素生成的基态原子高几个数量级。

原子荧光光谱仪特点

1. 实现双灯位、双注射泵、双通道全自动测量能够实现双灯同时预热,改善稳定性同时提高工作效率,节省样品和试剂用量,大幅度降低检测成本。采用双注射泵吸取样品和还原剂,提高取样精准度,保证蒸气发生反应的一致性,测试数据的精密度和准确度得以有效保证。还原剂用量可根据实际样品酸度进行精确调整,寻找蒸气反应发

原子荧光光谱的方法优点

原子荧光光谱法的优点:(1)有较低的检出限,灵敏度高。特别对Cd、Zn等元素有相当低的检出限,Cd可达0.001ng/cm、Zn为0.04ng/cm现已有2O多种元素低于原子吸收光谱法的检出限。由于原子荧光的辐射强度与激发光源成比例,采用新的高强度光源可进一步降低其检出限。(2)干扰较少,谱线比较简

原子荧光光谱法介绍

原子荧光光谱法( AFS) 因化学蒸气分离、非色散光学系统等特性,是测定微量砷、锑、铋、汞、硒、碲、锗等元素最成功的分析方法之一。

原子荧光光谱法简介

原子荧光光谱法( AFS) 因化学蒸气分离、非色散光学系统等特性,是测定微量砷、锑、铋、汞、硒、碲、锗等元素最成功的分析方法之一。

原子荧光光谱仪优点

优点有较低的检出限,灵敏度高。特别对Cd、Zn等元素有相当低的检出限,Cd可达0.001ng·cm-3、Zn为0.04ng·cm-3。现已有2O多种元素低于原子吸收光谱法的检出限。由于原子荧光的辐射强度与激发光源成比例,采用新的高强度光源可进一步降低其检出限。干扰较少,谱线比较简单,采用一些装置,可

原子荧光光谱仪简介

基本介绍利用原子荧光谱线的波长和强度进行物质的定性与定量分析的方法。原子蒸气吸收特征波长的辐射之后,原子激发到高能级,激发态原子接着以辐射方式去活化,由高能级跃迁到较低能级的过程中所发射的光称为原子荧光。当激发光源停止照射之后,发射荧光的过程随即停止。 原子荧光可分为 3类:即共振荧光、非共振荧光和