中国科大提出描述纳米通道气体输运的普适Knudsen理论模型
中国科学技术大学工程科学学院近代力学系、中国科学院材料力学行为和设计重点实验室王奉超研究团队在纳米通道气体输运的理论研究方面取得进展,提出普适的Knudsen理论模型,适用于定量描述任意壁面粗糙度的纳米通道内的气体流量。该研究成果以A generalized Knudsen theory for gas transport with specular and diffuse reflections为题近日发表在《自然-通讯》(Nature Communications)上。 纳米通道中气体输运,不仅在自然界中广泛存在,而且在膜分离、纳米催化、页岩气开采等工业过程中发挥着关键作用。纳米通道气体输运属于自由分子流状态,气体分子与通道壁面的碰撞起主导作用,而气体分子间的相互作用可忽略不计。1909年,丹麦物理学家Martin Knudsen首次提出了描述自由分子流气体流量的理论模型,即Knudsen理论。随后,经过波兰物理学家M......阅读全文
中国科大提出描述纳米通道气体输运的普适Knudsen理论模型
中国科学技术大学工程科学学院近代力学系、中国科学院材料力学行为和设计重点实验室王奉超研究团队在纳米通道气体输运的理论研究方面取得进展,提出普适的Knudsen理论模型,适用于定量描述任意壁面粗糙度的纳米通道内的气体流量。该研究成果以A generalized Knudsen theory for
中国科大提出描述纳米通道气体输运的普适Knudsen理论模型
中国科学技术大学工程科学学院近代力学系、中国科学院材料力学行为和设计重点实验室王奉超研究团队在纳米通道气体输运的理论研究方面取得进展,提出普适的Knudsen理论模型,适用于定量描述任意壁面粗糙度的纳米通道内的气体流量。该研究成果以A generalized Knudsen theory for
中国科大提出描述纳米通道气体输运的普适Knudsen理论模型
中国科学技术大学工程科学学院近代力学系、中国科学院材料力学行为和设计重点实验室王奉超研究团队在纳米通道气体输运的理论研究方面取得进展,提出普适的Knudsen理论模型,适用于定量描述任意壁面粗糙度的纳米通道内的气体流量。该研究成果以A generalized Knudsen theory for
中国科大提出普适Knudsen理论模型
原文地址:http://news.sciencenet.cn/htmlnews/2023/11/512930.shtm
单分子阀门-实现纳米通道中的单分子流动
科学界设想利用微小的分子作为构建物体的基础元素,类似于我们用机械部件组装东西的方式。然而,挑战在于分子非常小,大约是一个垒球大小的一亿分之一,而且它们在液体中会随机移动,使得控制和操纵它们成为一种单一的形式很困难。为了克服这一障碍,能够通过非常狭窄的通道(尺寸类似于百万分之一根吸管)输送分子的"纳米
理化所发表纳米通道浸润性与应用综述文章
纳米通道浸润性研究对于解决界面化学和流体力学中遗留的众多挑战性问题至关重要,并广泛应用于物质传输、纳米限域催化、限域化学反应、纳米材料制备、能量储存和转化、液体分离等领域。纳米通道的尺寸是影响液体浸润性的关键因素,当通道直径小于10纳米时,通道内液体由于限域效应出现非连续流体行为;当通道直径大于
理化所发表纳米通道浸润性与应用综述文章
纳米通道浸润性研究对于解决界面化学和流体力学中遗留的众多挑战性问题至关重要,并广泛应用于物质传输、纳米限域催化、限域化学反应、纳米材料制备、能量储存和转化、液体分离等领域。纳米通道的尺寸是影响液体浸润性的关键因素,当通道直径小于10纳米时,通道内液体由于限域效应出现非连续流体行为;当通道直径大于
蛭石纳米材料通道膜技术实现高盐实际水质渗透回收
西安建筑科技大学环境与市政工程学院、陕西省膜分离技术研究院团队开发的基于二维蛭石纳米材料的异质纳米通道膜,实现在高盐卤水、工业废水等实际水质条件下高效稳定的渗透能回收,其相关成果近日以《蛭石异质纳米通道膜在实际高盐体系中的渗透能回收》为题,发表在国际期刊《自然·通讯》上。 近年来,蕴藏于海水、
中科大在石墨烯纳米通道水输运研究取得突破
近日,中国科大中科院材料力学行为和设计重点实验室研究团队与诺贝尔物理学奖得主、英国曼彻斯特大学教授安德烈·海姆研究团队合作,在石墨烯纳米通道水输运方面取得重要研究进展。该成果已发表在《自然》上。 据介绍,科研人员利用石墨烯薄的特点提出了一种构筑纳米通道的新方法,把大小不同的石墨烯堆垛起来,形成
蛭石纳米材料通道膜技术实现高盐实际水质渗透回收
原文地址:http://news.sciencenet.cn/htmlnews/2024/1/516600.shtm记者23日从西安建筑科技大学获悉,该校环境与市政工程学院、陕西省膜分离技术研究院团队开发的基于二维蛭石纳米材料的异质纳米通道膜,实现在高盐卤水、工业废水等实际水质条件下高效稳定的渗透能
苏州纳米所离子选择通道原型器件研究取得新进展
苏州纳米所离子选择通道原型器件研究取得新进展 利用人工纳米管道对特定离子实现高效筛选一直是学术界和产业界的梦想,其直接应用之一就是将海水中的盐离子和水分离;对具有离子选择性的纳米管道的原型器件(即基于纳米微流体的“p-n”结)研究也是对突破传统“p-n”结纳米器件的重要探
异质纳米通道膜在高盐体系中渗透能回收获揭示
原文地址:http://news.sciencenet.cn/htmlnews/2024/1/516681.shtm1月24日,西安建筑科技大学环境与市政工程学院、陕西省膜分离技术研究院团队在膜分离领域取得突破,相关研究成果发表在《自然-通讯》上。具有离子分离特性的功能薄膜是渗透能回收的关键。然而,
西建大蛭石纳米材料通道膜技术实现渗透能高效回收
原文地址:http://news.sciencenet.cn/htmlnews/2024/1/516643.shtm近年来,蕴藏于海水、卤水和高盐工业废水等自然与工业资源中的“蓝色能源”——渗透能,因其储量大、可再生等特点,受到了研究者的广泛关注。具有离子分离特性的功能薄膜是渗透能回收的关键。然而,
人工脂双层记录:-分析不含其他蛋白质的通道和纳米孔
使用人工脂质双层记录可以监测离子通道活性,其中可以测量许多类型的重建离子通道和纳米孔。不同于在整个的活细胞上进行的实验,人工双层为研究离子通道和其他完整的膜蛋白提供了不同的方法。主要优点在于完全没有任何不需要的干扰物质,以及对目标分子进行单一通道水平的方便和可重复的研究。这是通过将纯化的蛋白质或具有
碳纳米管创造人工细胞膜通道-有望实现精确治疗
据科学日报报道,近日由美国劳伦斯利弗莫尔国家实验室的科学家带领的科研小组创造了一个包含短碳纳米管的离子通道,后者可以被插入合成磷脂双分子层或者活的细胞膜以形成小的孔,用于传输水、质子、小型离子和DNA。 这些碳纳米管“膜孔蛋白”对于未来健康保健和生物工程具有重要的启示意义。碳纳
美开发出具有高度均匀亚纳米通道的自组装聚合物膜
其通道大小和形状均可量身定制 据美国物理学家组织网近日报道,未来学家曾设想过一种分子通道聚合物膜,可用来捕获碳,生产以太阳能为基础的燃料,或进行海水淡化处理,不过前提是这类聚合物膜可以很容易地大规模制造。美国科学家最近开发出一种具有高度均匀亚纳米通道的自组装聚合物膜,首次实现了在宏
重庆研究院等在新型固态纳米通道器件的构建与应用方面获进展
近年来,纳米通道单分子分析发展迅速。然而,固态纳米孔结构的低重现性、低信噪比以及生物纳米孔支撑体系的低稳定性制约了纳米孔技术的规模化应用。 中国科学院重庆绿色智能技术研究院精准医疗中心与华中科技大学合作,构建出新型有机/无机复合纳米通道并用于单氨基酸及手性的鉴别工作。 该研究设计的芳香酰胺手
生物膜离子通道的离子通道特性
离子通道特性1、选择性:指一种通道优先让某种离子通过,而另一些离子则不容易通过该种通道的特性。例如钠通道开放时,钠离子可通过,而钾离子则不能通过。2、开关性:离子通道存在两种状态,即开放和关闭状态。多数情况时,离子通道是关闭的,只在一定的条件下开放。通道由关闭状态转为开放的过程称为激活,由开放转为关
部长通道代表通道热议生态环境保护
在3月5日举行的十三届全国人大二次会议开幕会前,大会开启了首场“代表通道”。开幕会结束后,“部长通道”再次开启。 在两场活动中,多位部长和全国人大代表回答了生态环境保护方面的提问。 海关总署署长 倪岳峰 倪岳峰:去年固废进口量下降46.5% 在十三届全国人大二次会议开幕会后开启的“部长通
生物膜离子通道的离子通道分类
离子通道的开放和关闭,称为门控。根据门控机制的不同,将离子通道分为三大类:⑴电压门控性,又称电压依赖性或电压敏感性离子通道:因膜电位变化而开启和关闭,以最容易通过的离子命名,如钾、钠、钙、氯通道四种主要类型,各型又分若干亚型。⑵配体门控性,又称化学门控性离子通道。由递质与通道蛋白质受体分子上的结合位
癌症扩散的关键分子
癌症是一种细胞生长的疾病,但大多数肿瘤只有从其原发位置扩散到全身各处时,才会变得具有致命性。最近,美国托马斯杰弗逊大学的研究人员发现,一个分子可能是驱动前列腺癌转移的重要调控因子。这项研究结果,发表于七月十三日的《Cancer Cell》,为开发药物防止前列腺癌以及可能其他癌症的转移,提供了一个
钠通道的定义
中文名称钠通道英文名称sodium channel定 义膜上存在的允许少量的Na+顺其电化学梯度进入细胞的通道。应用学科细胞生物学(一级学科),细胞生理(二级学科)
通道蛋白的分类
其主要分为两大类:水通道蛋白和离子通道蛋白 通道蛋白可以是单体蛋白,也可以是多亚基组成的蛋白,它们都是通过疏水的氨基酸链进行重排,形成水性通道。通道蛋白本身并不直接与小的带电荷的分子相互作用, 这些小的带电荷的分子可以自由的扩散通过由脂双层中膜蛋白带电荷的亲水区所形成的水性通道。通道蛋白的运输
机械门通道简介
细胞可以接受各种各样的机械力刺激,如摩擦力、压力、牵拉力、重力、剪切力等。细胞将机械刺激的信号转化为电化学信号最终引起细胞反应的过程称为机械信号转导(mechanotransduction)。比较明确的有两类机械门通道,其一是牵拉活化或失活的离子通道,另一类是剪切力敏感的离子通道,前者几乎存在于所有
移液器的通道数
从第一支移液器到现在移液器市场的主流,都是每次都只能转移一份液体样品的移液器,我们称之为单道移液器。但随着生命科学领域的快速发展,很多时候单道移液器意味着效率低下。举例而言,如果要填充满一个96孔板(96孔板就是一个有96个孔的塑料板,每个孔都能容纳一定体积的液体),用单道移液器就必须重复96
离子通道分类
离子通道的开放和关闭,称为门控。根据门控机制的不同,将离子通道分为三大类:⑴电压门控性,又称电压依赖性或电压敏感性离子通道:因膜电位变化而开启和关闭,以最容易通过的离子命名,如钾、钠、钙、氯通道四种主要类型,各型又分若干亚型。⑵配体门控性,又称化学门控性离子通道。由递质与通道蛋白质受体分子上的结合位
配体门通道简介
表面受体与细胞外的特定物质(配体ligand)结合,引起门通道蛋白发生构象变化,结果使“门”打开,又称离子通道型受体。分为阳离子通道,如乙酰胆碱、谷氨酸和五羟色胺的受体,和阴离子通道,如甘氨酸和γ-氨基丁酸的受体。N型乙酰胆碱受体[1]是了解较多的一类配体门通道。它是由4种不同的亚单位组成的5聚体,
电位门通道简介
电位门通道(voltage gated channel)是对细胞内或细胞外特异离子浓度发生变化时,或对其他刺激引起膜电位变化时,致使其构象变化,“门”打开。如:神经肌肉接点由Ach门控通道开放而出现终板电位时,这个电位改变可使相邻的肌细胞膜中存在的电位门Na+通道和K+通道相继激活(即通道开放),引
我所基于纳米离子通道器件开发出检测SUMO1蛋白的新方法
原文地址:http://www.dicp.cas.cn/xwdt/kyjz/202307/t20230721_6814330.html 近日,我所生物技术研究部生物分离与界面分子机制研究组(1824组)卿光焱研究员团队和生物分子高效分离与表征研究组(1810组)张丽华研究员团队合作,在蛋白质SUM
Science:Na+门控水传导纳米通道促进CO2转化为液体燃料
【引言】 我们探索了是否可以制造纳米通道,以在高温和高压条件下排斥大约为水合离子大小(如Na+,6.6Å)的小气体分子,以用于催化。例如,副产物水强烈抑制了CO2加氢成液体燃料(如甲醇)的动力学和热力学。疏气导水纳米通道可以通过除去水,保留反应气体和产物的同时,可以提高反应速率,使平衡向产物生