硅基电池技术突破:电动汽车续航1000公里不再梦想

【前沿科技观察】目前,电动汽车的单次充电续航里程已经达到约700公里,科研人员的追求目标是将电池的续航里程提高至1000公里。为实现这一目标,研究人员正在研究将高储能容量的硅应用于电动汽车锂离子电池的阳极材料。尽管硅具备巨大潜力,但科研人员仍在努力解决将其应用于实际情境的难题。在这方面,浦项科技大学化学系的Soojin Park教授及其团队取得了突破性进展。他们成功利用微硅颗粒和凝胶聚合物电解质开发了一种高能量密度的锂离子电池系统,具有便携性和卓越的稳定性。相关研究成果已发表在《先进科学》杂志上。该团队采用凝胶聚合物电解质技术,成功开发了经济稳定的硅基电池系统。电解质在锂离子电池中是至关重要的组成部分,有助于电荷在阴极和阳极之间的传递。相较于传统液态电解质,凝胶电解质以固态或凝胶状态存在,具有更好的稳定性,得益于其弹性聚合物结构。研究结果表明,即便使用了比传统纳米硅阳极大100倍的微硅颗粒(5μm),电池仍然表现出卓越的稳定性。......阅读全文

硅基全电池的其他重要参数

初始库仑效率(ICE)是全电池设计的关键,因为它对活性材料的利用率起着决定性的作用,从而影响适用电池的总重量。然而,大多数关于硅负极LIBs的研究都集中在实验室。在实验研究中,通常采用金属锂作为对电极,但锂通常过量,这使得第一次嵌锂过程中SEI膜形成和副反应引起的Li+损失不会显着恶化循环稳定性。在

硅基混合能源电池研究取得重要进展

  在过去十年里,由于能源危机和全球变暖现象的出现,可再生能源和绿色能源的利用引起了广泛的关注。硅基太阳能电池以其低成本、高性能和大规模生产等特点得到人们的广泛肯定。   硅太阳能电池是目前最成熟的太阳能电池技术之一。光调控是一种有效提升太阳能电池性能的方法,如通过增强光吸收能力和制造各种金字塔表

化学所锂电池硅基负极研究取得进展

在实现碳达峰和碳中和目标的背景下,开发高能量密度、长寿命的锂离子电池至关重要。相较于传统石墨负极,具有更高理论比容量的硅基材料被认为是颇有前景的锂离子电池负极材料。然而,硅基负极在充放电时存在较大的体积变化,并伴随有材料结构粉化和电极/电解质间的界面副反应,限制了其循环寿命。因此,优化硅基材料的结构

化学所锂电池硅基负极研究取得进展

在实现碳达峰和碳中和目标的背景下,开发高能量密度、长寿命的锂离子电池至关重要。相较于传统石墨负极,具有更高理论比容量的硅基材料被认为是颇有前景的锂离子电池负极材料。然而,硅基负极在充放电时存在较大的体积变化,并伴随有材料结构粉化和电极/电解质间的界面副反应,限制了其循环寿命。因此,优化硅基材料的结构

我国最大硅基薄膜太阳能电池项目投产

  薄膜太阳能电池是新型高效率、高稳定性硅基薄膜太阳能电池,具有成本低、弱光响应好、能量返还期短等突出优点。6月15日,由汉能控股集团投资兴建的我国最大的汉能硅基薄膜太阳能电池项目在成都双流西航港经济开发区建成投产。这标志着我国有自主知识产权的薄膜太阳能电池量产取得重大突破,也标

俄美研制新材料太阳能电池,或能取代硅基电池

  硅基太阳能电池从20世纪中叶研发到现在也有几十年了,这几十年中,关于太阳能发电领域一直也没有什么革命性的突破。硅基电池虽然非常流行,但是其技术缺陷也十分明显,比如制作耗能、成本高,电池脆弱、重量大等等。而这些问题都将被解决,因为俄美联合推出了新材料。  俄罗斯莫斯科钢铁合金学院和美国德克萨斯大学

什么是硅基负极材料?

更高的正极比容量、更高的负极比容量和更高的电池电压(以及更少的辅助组元),是高能量密度电池的理论实现路径。正极材料的比容量相对更低,性能提升对电池(单体)作用显著;负极比容量提升对于电池能量密度提升仍有相当程度作用。硅材料的理论比容量远高于(约10倍)已逼近性能极限的石墨,有望成为高能量密度锂电池的

硅基超亲电解液锂电池隔膜研究获进展

  能量型锂金属电池作为下一代电化学储能技术,是电动汽车、航空航天等领域发展的基础。然而,在构建高比能锂金属电池的条件(如欠锂、低电解液用量等)下,锂枝晶不可控生长和中间产物穿梭等问题制约了产业化进程。与其他策略相比,隔膜的表界面调控可耦合正、负极界面问题的解决方案,且具有不易增加电池体积和质量等优

通过ALD方式制备纳米结构的黑色硅基太阳能电池

  运用纳米技术可以极大地提高光伏的光电转换效率,芬兰阿尔托大学的研究者通过ALD技术与纳米技术研制的黑色电池是一个不错的例子。纳米结构的制备是通过等离子体刻蚀完成的,这可以极大地削弱光线的反射。此外,ALD方式制备出恰当的钝化薄层可以使表面层的载流子复合减少。   "纳米结构的黑色电池的工作性能

高性能硅基薄膜太阳能电池组件湖南下线

  5月9日,具有自主知识产权的高性能硅基薄膜太阳能电池组件在湖南共创光伏科技有限公司正式下线。湖南省委常委、副省长陈肇雄出席投产仪式。据该公司首席科学家李廷凯介绍,这是全国乃至全球最先进的一条硅基薄膜太阳能电池生产线,可生产出光电转化率达12%的产品,而目前同类产品的光电转化率一般在9%以下。 

硅基负极材料的性能特点

更高的正极比容量、更高的负极比容量和更高的电池电压(以及更少的辅助组元),是高能量密度电池的理论实现路径。正极材料的比容量相对更低,性能提升对电池(单体)作用显著;负极比容量提升对于电池能量密度提升仍有相当程度作用。硅材料的理论比容量远高于(约10倍)已逼近性能极限的石墨,有望成为高能量密度锂电池的

李静海调研物理所高效硅基太阳电池研究工作

  3月14日上午,中国科学院副院长李静海在物理所调研高效硅基太阳电池研发工作。     物理所杜小龙研究员汇报了高效黑硅太阳能电池的研发进展,详细介绍了催化刻蚀法制备纳米结构获得低反射单晶硅片和多晶硅片的工艺特点以及后续有关电池制作的一系列创新工艺,分析了相关技术进行产业开发的前景

新研究实现硅基非传统超导

原文地址:http://news.sciencenet.cn/htmlnews/2023/5/500710.shtm近日,中山大学电子与信息工程学院(微电子学院)副教授明方飞与南方科技大学副教授王克东团队、美国田纳西大学教授Weitering团队等合作,在硅基拓扑超导研究方面取得重要进展。相关研究成

“神奇材料”石墨烯“联姻”硅基技术

  据物理学家组织网7月10日(北京时间)报道,奥地利、德国和俄罗斯的科学家们合作研发出一种新方法,可以很好地让“神奇材料”石墨烯同现有占主流的硅基技术“联姻”,制造出在半导体设备等领域广泛运用的石墨烯-硅化物。相关研究发表在英国自然集团旗下的《科学报告》杂志上。   石墨烯是从石墨材料中剥离出来

为何选择硅基微流控芯片?

第一种应用于微流控芯片的材料是硅,虽然它很快被玻璃和聚合物取代。硅首先被选中是因为:* 它对有机溶剂的耐受性* 容易金属沉积* 优越的导热性* 表面稳定性然而,硅基微流控芯片由于其硬度而不易处理,因此难以生成如微阀或微泵等有源微流控部件。另一个缺点是当进行光学检测时,硅展现出明显的不透光性。此外,由

如何区分单晶硅和多晶硅电池板?

太阳能电池的发展过程,主要经历了三个阶段:第一阶段,主要是多晶硅、单晶硅太阳能电池。第二阶段,主要是非晶硅薄膜太阳能电池和晶硅薄膜太阳能电池。第三阶段,主要是钙钛矿太阳能电池、量子点太阳能电池、有机太阳能电池等一些新概念太阳能电池。目前来说,多晶硅和单晶硅太阳能电池占据着九成的市场,其他的太阳能电池

“掺硅补锂”电池技术介绍

从定义来说,此次智已汽车推出的“掺硅补锂”技术与蔚来固态电池所用的“无机预锂化碳硅负极”并无本质上的差异,其实质均为提高负极中硅的含量,同时增加锂的含量,来弥补因硅含量提升而导致的电池在充放电过程中锂损耗的提高。关于“掺硅”方面,实际上是在负极材料当中加入硅元素。原因在于,制约动力电池能量密度的已不

什么是锂电池“掺硅”?

要提升电池能量密度,电池的正极和负极材料的比容量(指单位质量或体积的电池或活性物质所能放出的电量)都需要提升。正极材料目前一般采用高镍,比如我们所说的NCM811电池,而负极采用石墨负极。现在,硅基负极替代石墨负极的时刻即将来临。而且,随着特斯拉在量产的 Model 3上对硅碳负极的成功应用,这种示

旧电池的崛起——镍基电池

  随着工业改革步伐的加快,汽车行业面临着许多方面的调整,节能减排是最受到关注的,BASF化学公司就此在汽车电池上面做了相关研究,并发现镍氢电池的储能能力可以改善汽车的耗能,因此,旧型镍基电池将会重新崛起,让我们拭目以待。  BASF化学公司说,现在用在混合动力车上的普通电池性能

王曦:领航高端硅基产业蓝海

  王曦,中国科学院院士,我国著名半导体材料学专家,中科院上海微系统与信息技术研究所所长、我国高端集成电路衬底材料的主要开拓者和领军人物。3月23日,他在上海科技奖励大会上获得了2017年度科技功臣奖。  在中国,如果提到高端硅基SOI材料研发和产业化,业内人士都会提到一个名字——王曦。  王曦,中

硅基动态血糖仪怎么样

硅基动态血糖仪亲测大大好用,我是低血糖,为了稳定血糖,现在每天都在戴着,硅基动态血糖仪对我来说,帮助很大。它不像传统血糖仪需要扎手指,直接戴在手臂或胳膊上就好了。而且它的功能很人性化,可以连续14天自动测血糖,每时每刻的血糖详情会同步到手机上。每天还会生成血糖数据分析,根据数据变化及时调节饮食。如果

合肥研究院柔性单晶硅基微纳结构太阳电池研究获进展

  近期,中国科学院合肥物质科学研究院固体物理研究所微纳技术与器件研究室研究员叶长辉课题组在柔性单晶硅基微纳结构太阳电池研究方面取得新进展,相关结果以封面论文形式发表在《纳米研究》(Nano Res. 2015, 8(10), 3141-3149)上。  晶硅太阳电池凭借其成熟的

氟基电池,未来电池新希望

  开发高能量密度电池是电动汽车和智能电网等长续航和大规模储能体系的长期追求目标。锂金属氟基电池能够通过多电子转移和高电位的转换反应,具备实现高能量密度储能的潜质(理论上接近1000Wh/kg 和1800 Wh/L);相比分子转换型锂硫和锂氧电池,能够更好地规避由反应限域困难引发的正极活性物质损失和

​什么是钠基电池?

钠基电池是钠与一种叫做肌醇的化合物结合在一起的一种电池。2017年十月,由斯坦福大学的研究人员开发出来。这种新型电池里的钠与一种叫做肌醇的化合物结合在一起,这是一种在家用产品中常见的有机化合物,包括婴儿配方奶粉。正如钠的含量比锂要丰富得多,米糠醇很容易从米糠中提炼出来,也可以在玉米加工过程中产生的副

什么是钠基电池?

钠基电池是钠与一种叫做肌醇的化合物结合在一起的一种电池。2017年十月,由斯坦福大学的研究人员开发出来。这种新型电池里的钠与一种叫做肌醇的化合物结合在一起,这是一种在家用产品中常见的有机化合物,包括婴儿配方奶粉。正如钠的含量比锂要丰富得多,米糠醇很容易从米糠中提炼出来,也可以在玉米加工过程中产生的副

什么是钠基电池?

钠基电池是钠与一种叫做肌醇的化合物结合在一起的一种电池。2017年十月,由斯坦福大学的研究人员开发出来。这种新型电池里的钠与一种叫做肌醇的化合物结合在一起,这是一种在家用产品中常见的有机化合物,包括婴儿配方奶粉。正如钠的含量比锂要丰富得多,米糠醇很容易从米糠中提炼出来,也可以在玉米加工过程中产生的副

钠基电池主要原理

钠离子电池中,钠离子可附着在肌醇上,而肌醇是一种常见的化合物,可从米糠或玉米加工过程中的液体副产物中提取。钠离子和肌醇的新结合显着改善钠基电池的离子循环,使离子能更加有效地从阴极移动穿过电解质到磷阳极,继而出现更强的电流。钠基和钾基电池面对的最大障碍之一是它们会更快地衰变和退化,且能量密度比锂离子电

什么是钠基电池?

  钠基电池是钠与一种叫做肌醇的化合物结合在一起的一种电池。2017年十月,由斯坦福大学的研究人员开发出来。钠离子电池中,钠离子可附着在肌醇上,而肌醇是一种常见的化合物,可从米糠或玉米加工过程中的液体副产物中提取。钠离子和肌醇的新结合显著改善钠基电池的离子循环,使离子能更加有效地从阴极移动穿过电解质

钠基电池主要原理

钠离子电池中,钠离子可附着在肌醇上,而肌醇是一种常见的化合物,可从米糠或玉米加工过程中的液体副产物中提取。钠离子和肌醇的新结合显着改善钠基电池的离子循环,使离子能更加有效地从阴极移动穿过电解质到磷阳极,继而出现更强的电流。钠基和钾基电池面对的最大障碍之一是它们会更快地衰变和退化,且能量密度比锂离子电

钠基电池主要原理

钠离子电池中,钠离子可附着在肌醇上,而肌醇是一种常见的化合物,可从米糠或玉米加工过程中的液体副产物中提取。钠离子和肌醇的新结合显着改善钠基电池的离子循环,使离子能更加有效地从阴极移动穿过电解质到磷阳极,继而出现更强的电流。钠基和钾基电池面对的最大障碍之一是它们会更快地衰变和退化,且能量密度比锂离子电