“羲和号”助力发现太阳喷流磁场结构的形成过程

近日,北京大学、南京大学、云南大学、中国科学院云南天文台的合作团队利用“羲和号”卫星的Hα光谱成像以及美国太阳动力学天文台的数据,发现太阳大气中一种特殊磁场位型的形成过程及其内部能量变化,这为太阳喷流过程中的能量储存和释放机制提供了重要线索。相关研究成果近日发表于国际学术期刊《天体物理学快报》的“羲和号”专刊。喷流是太阳大气中最普遍的爆发现象之一,在太阳大气的加热和物质循环过程中起到了重要作用。同时,太阳喷流也是人类迄今为止唯一能够开展多波段、高时空分辨率观测的天体喷流现象。理解太阳喷流的磁场环境及能量释放过程可为理解天体喷流提供重要的线索。“在太阳大气中,存在一种特殊的磁场位型‘三维扇脊零点结构’,它非常有利于能量的储存和释放。近年来,越来越多的研究发现,许多太阳喷流发生在该结构中。”论文第一作者、北京大学博士后段雅丹介绍,在该结构的零点处,磁重联很容易发生,从而导致太阳爆发活动。研究该结构的形成过程,可以帮助我们更好地理解太......阅读全文

“羲和号”助力发现太阳喷流磁场结构的形成过程

近日,北京大学、南京大学、云南大学、中国科学院云南天文台的合作团队利用“羲和号”卫星的Hα光谱成像以及美国太阳动力学天文台的数据,发现太阳大气中一种特殊磁场位型的形成过程及其内部能量变化,这为太阳喷流过程中的能量储存和释放机制提供了重要线索。相关研究成果近日发表于国际学术期刊《天体物理学快报》的“羲

“羲和号”系列成果发布

  近日,中国国家航天局正式发布中国首颗太阳探测科学技术试验卫星“羲和号”取得的系列新成果,其中包括已观测到近百个太阳爆发活动、首次在轨获取太阳Hα谱线精细结构、进一步试验中国新型卫星技术。  2021年10月14日,“羲和号”发射升空,运行于平均高度为517公里的太阳同步轨道,主要科学载荷为太阳H

“羲和号”再现太阳暗条爆发三维动力学过程

原文地址:http://news.sciencenet.cn/htmlnews/2024/2/517371.shtm太阳表面的细长暗条变化多端。它们有时会突然消失,有时又会突然爆发,像其他太阳爆发活动一样,给地球磁场带来或多或少的干扰。2月5日,记者从南京大学获悉,该校太阳物理团队基于“羲和号”全日

国际“群雄逐日”-中国“羲和”有何潜力?

北京8月30日,中国国家航天局30日发布“羲和”探日成果。在人类文明发展进程中,研究并认识太阳,一直是国内外科学家关注的重中之重,而空间太阳探测具有不受地球大气吸收影响的优势。作为中国首颗太阳探测科学技术试验卫星,“羲和号”有何突出表现,“双星逐日”景象何时实现,中国探日计划的未来重点是什么等话题备

中国首颗“羲和号”如何给太阳大气做“CT”?

8月30日,中国首颗太阳探测科学技术试验卫星“羲和号”探日成果在北京正式发布,该卫星由中国航天科技集团八院抓总研制。自2021年10月14日成功发射以来,“羲和号”按照既定任务计划开展科学观测,累计下传原始观测数据50Tbit,生成科学数据约300Tbit,这些数据已向全球开放共享,得到了美、法、德

“羲和号”首次获得三种太阳谱线轮廓

  “‘羲和号’发射后,已经在空间首次同时获得了太阳全日面Hα谱线、Si I谱线和Fe I谱线的精细结构和光谱成像,以及几十个太阳耀斑的资料。”7月19日,在教育部“教育这十年”“1+1”系列发布会之高校科技创新改革发展成效新闻发布采访活动中,中国科学院院士、“羲和号”科学总顾问、南京大学教授方成欣

羲和号首次在轨获得太阳Hα谱线

“羲和号”卫星是我国首颗太阳探测的科学技术实验卫星,去年10月14日在太原卫星发射中心成功发射,标志着我国正式迈入空间探日的时代。1月28日,中国国家航天局对地观测与数据中心主任赵坚在国务院新闻办公室举行的新闻发布会上表示,这颗卫星经过三个多月的在轨测试和实验,已经完成卫星平台技术验证40多次,对太

“羲和号”屡创佳绩-我国正式步入自主探日时代

昨天(30日),国家航天局发布了我国首颗太阳探测科学技术试验卫星“羲和号”的成果,创下五个国际“首次”,标志着我国正式步入自主“探日”时代。 从神舟飞天,到嫦娥奔月,再到天问探火,中国人探索宇宙奥秘的脚步从未停止。现在,随着羲和号公布的这份成绩单,让我们探索太空的脚步又向前迈进了一步。 这两

中国初步建立综合性太阳观测网

  去年发射的“羲和号”可以称为我国探日工程的“探路者”,而“夸父一号”则是观察太阳的多面手,它可以从紫外线、可见光和X射线波段等对太阳进行观测。我国发射的两颗探日卫星各有侧重,将共同提升我国在世界太阳物理研究领域的影响力。  10月9日上午,我国综合性太阳探测卫星“夸父一号”,在酒泉卫星发射中心搭

我国初步建立综合性太阳观测网

去年发射的“羲和号”可以称为我国探日工程的“探路者”,而“夸父一号”则是观察太阳的多面手,它可以从紫外线、可见光和X射线波段等对太阳进行观测。我国发射的两颗探日卫星各有侧重,将共同提升我国在世界太阳物理研究领域的影响力。 10月9日上午,我国综合性太阳探测卫星“夸父一号”,在酒泉卫星发射中心搭乘

相距1.5亿公里,给太阳大气做CT的“羲和号”

成功在轨运行10个月后,我国首颗太阳探测科学技术试验卫星“羲和号”的科学探测和卫星技术成果今天正式公布。从“羲和号”上“看”太阳,观测到了什么?这些科学探测成果,对于人类认识太阳有哪些新贡献?后续太阳探测活动,还将如何开展?  相当于给太阳低层大气做CT扫描  “羲和号”于2021年10月14日发射

南京大学助力“羲和号”完成全部在轨试验项目

原文地址:http://news.sciencenet.cn/htmlnews/2023/2/494699.shtm 近日,国家航天局重大专项工程中心在北京组织召开了“羲和号”卫星在轨试验总结评审会。中心赵坚主任、孟令杰党委书记,南京大学方成院士,航天科技集团姜乙先工程总师,航天科技集团八院刘付

紫金山天文台等举办第二届“夸父一号”和“羲和号”太阳探测卫星联合科学大会

  5月11日至14日,第二届“夸父一号”和“羲和号”太阳探测卫星联合科学大会在南京大学苏州校区召开。大会旨在总结一年多来基于两颗卫星观测数据的研究进展,更好推进未来科学产出。来自全国34家单位的200余位学者参加会议。  “羲和号”(CHASE)是我国首颗太阳探测科学技术试验卫星,于2021年10

探测太阳一年多-“羲和号”再获两项重要发现

在轨运行13个月后,我国首颗太阳探测科学技术试验卫星“羲和号”再传好消息。11月16日,在中国天文学会成立百年纪念大会上,“羲和号”首席科学家、南京大学教授丁明德透露,“羲和号”再获两项重要发现,即同时测量到太阳光球和色球的较差自转以及成功捕捉到一次罕见的X1级大耀斑。较差自转是指天体在自转时不同部

探测太阳一年多-“羲和号”再获两项重要发现

在轨运行13个月后,我国首颗太阳探测科学技术试验卫星“羲和号”再传好消息。 11月16日,在中国天文学会成立百年纪念大会上,“羲和号”首席科学家、南京大学教授丁明德透露,“羲和号”再获两项重要发现,即同时测量到太阳光球和色球的较差自转以及成功捕捉到一次罕见的X1级大耀斑。 较差自转是指天体在

羲和二号论证中-计划开启中国太阳立体探测时代

原文地址:http://news.sciencenet.cn/htmlnews/2023/9/508495.shtm

创下5个国际首次,“羲和”探日成果正式发布

记者从国家航天局获悉,8月30日,我国首颗太阳探测科学技术试验卫星“羲和号”成果正式发布,共创下5个国际首次。自发射以来,“羲和号”按照既定任务计划开展科学观测,累计下传原始观测数据50Tbit,生成科学数据约300Tbit,对于后续开展太阳空间探测任务以及提升我国在空间科学领域国际影响力等具有重要

“羲和号”精确刻画出太阳大气较差自转的三维图像

太阳大气层的自转有什么规律,特别是不同高度的太阳大气,自转又是如何变化的,此前一直没有定论。然而,13日刊发于国际学术期刊《自然·天文学》的一篇论文,为理解太阳大气的自转规律提供新视角。来自南京大学、中国科学院云南天文台、上海航天技术研究院的科研人员根据我国首颗太阳探测科学技术试验卫星“羲和号”最新

我国太阳观测设备揭示巨型太阳暗条爆发的新途径

太阳暗条是如何爆发的?记者9日从南京大学获悉,云南大学、北京大学、南京大学等高校院所的科研人员,基于我国“羲和号”卫星和空间新技术试验卫星搭载的46.5纳米极紫外太阳成像仪等设备的最新观测,揭示了太阳表面小尺度磁活动引发大规模太阳暗条爆发的新途径。这一成果近日刊发在《天体物理学报》上。太阳暗条是悬浮

航天日将至-看这些中国“星”闪耀太空

52年前,中国第一颗人造地球卫星东方红一号发射成功,拉开了中国人探索宇宙奥秘、和平利用太空、造福人类的序幕。为了纪念这一壮举,我国将“中国航天日”定在了每年的4月24日。中国航天日从它诞生那一刻起就与卫星结下了不解之缘。7年前,中国科学院第一颗空间科学卫星系列首发星——暗物质粒子探测卫星“悟空”号发

多光谱和高光谱成像技术透视丝路壁画

  如何充分获取古代珍贵壁画内部信息,有效保护人类珍贵遗产?这一曾经困扰文保专家的难题,在非介入式成像技术广泛应用下迎刃而解。12月1日至3日,由英国诺丁汉特伦特大学发起,英国研究理事会支持,陕西历史博物馆、西安文保中心等单位协办,西北大学文化遗产学院主办的“成像科学与丝绸之路沿线壁画保护

磁强计的磁场和磁场感应强度相关介绍

  磁场  磁场是一种看不见,而又摸不着的特殊物质,它具有波粒的辐射特性。磁体周围存在磁场,磁体间的相互作用就是以磁场作为媒介的。电流、运动电荷、磁体或变化电场周围空间存在的一种特殊形态的物质。由于磁体的磁性来源于电流,电流是电荷的运动,因而概括地说,磁场是由运动电荷或电场的变化而产生的。.  磁感

最新研究揭示嫦娥四号红外成像光谱地面验证实验……

  玉兔二号巡视器已在月球表面工作超过40个月昼,其搭载的红外成像光谱仪(VNIS)随着巡视器的行走路线已测得多个位置的红外成像光谱数据。VNIS是用于研究着陆区月壤和月表岩石成分并追溯其来源的主要方法。然而,太空风化、颗粒大小与多次散射、仪器的光谱响应和观测条件等因素均会影响光谱特征,并导致由月球

专家议二十大报告:答好高水平科技自立自强考题

时代号角催人奋进,勠力同心逐梦前行。 “高瞻远瞩,凝心聚力,催人奋进!”中国科学院、中国工程院多位院士聆听党的二十大报告后表示,伟大历史变革令人倍感振奋,宏阔时代蓝图令人深受鼓舞,他们将牢记使命,勇于担当,守正创新,增强自主创新能力,提高人才自主培养质量。自立自强,为国铸重器 正运行于太阳同

成像光谱方法技术

一方面,高光谱分辨率的成像光谱遥感技术是对多光谱遥感技术的继承、发展和创新,因此,绝大部分多光谱遥感数据处理分析方法,仍然可用于高光谱数据;另一方面,成像光谱技术具有与多光谱技术不一样的技术特点,即高光谱分辨率、超多波段(波段<1000,通常为100~200个左右)和甚高光谱(Ultra Spect

FluorCam多光谱荧光成像技术应用案例—多光谱荧光成像...

FluorCam多光谱荧光成像技术应用案例—多光谱荧光成像是什么1. 多光谱荧光的发现及特性二十世纪八九十年代,植物生理学家对植物活体荧光——主要是叶绿素荧光研究不断深入。激发叶绿素荧光主要是使用红光、蓝光或绿光等可见光。当科学家使用UV紫外光对植物叶片进行激发,发现植物产生了具备4个特征性波峰的荧

风云三号卫星成功获取中分辨率光谱成像仪图像

中国气象报记者胡亚报道 继5月29日11时58分,风云三号地面应用系统成功获取风云三号A星第一幅可见光图像后,6月3日12时该系统又获取到覆盖我国西部地区的风云三号A星的中分辨率光谱成像仪第一幅图像。 中分辨率光谱成像仪为我国自主研制,首次在星上装载,具有多光谱成像和高分辨率的特点,可以监测中

红外成像光谱仪为嫦娥四号探测与研究保驾护航

  “嫦娥四号探测器拟着陆于月球背面的艾特肯盆地,在多台科学有效载荷中,红外成像光谱仪是唯一一台服务于月球矿物组成探测与研究的科学仪器,将获取毫米级空间分辨率的月壤高光谱图像及红外光谱数据。” 中科院上海技术物理研究所红外成像光谱仪副主任设计师徐睿说起有效载荷红外成像光谱仪如数家珍。 嫦娥四号红

成像光谱仪的性能参数和原理

成像光谱仪主要性能参数是:(1)噪声等效反射率差(NEΔp ),体现为信噪比(SNR);(2)瞬时视场角(IFOV),体现为地面分辨率;(3)光谱分辨率,直观地表现为波段多少和波段谱宽。高光谱分辨率遥感信息分析处理,集中于光谱维上进行图像信息的展开和定量分析,其图像处理模式的关键技术有:⑴超多维光谱

高光谱成像光谱仪

  高光谱成像光谱仪是一种用于农学领域的分析仪器,于2016年8月11日启用。  技术指标  技术参数:光谱范围1.0–2.5µm;空间像素384;F数F2.0,FOV16°;像素跨轨和延轨FOV,跨轨:0.73毫弧度,延轨:0.73毫弧度;光谱SAMPL5.45nm;噪声150e;峰值信噪比>11