上海首台磁共振加速器投入使用,精准灭杀肿瘤再添“利器”

4月9日,沪上首台磁共振加速器在复旦大学附属肿瘤医院正式投入临床使用,这意味恶性肿瘤的精准放射治疗又新添了一把“利器”。 该治疗系统治疗的肿瘤主要是头颈部肿瘤、乳腺癌、肝脏肿瘤、胰腺癌、胃、结直肠等,接下来,医院还将针对软组织肿瘤、食管癌、宫颈癌、前列腺癌等其它肿瘤开展治疗。此外,基于磁共振加速器的系列科学研究已经在持续开展中,包括基于MR-LINAC的一站式自适应放疗的临床应用、MR引导下直肠癌新辅助放化疗联合免疫治疗的前瞻性临床研究等。 这是一种光子放疗新模式,其创新在于:加速器根据实时的核磁共振图像,精准区分患者肿瘤组织和周围器官,通过高精度放射线照射肿瘤组织,医生全程“透视”并追踪肿瘤形态变化、实时调整治疗策略。 复旦大学附属肿瘤医院放射治疗中心主任章真教授说:“作为肿瘤治疗的主要手段之一,放射治疗也被誉为'隐形的手术刀’。其通过高能量的放射线照射肿瘤组织,实现杀灭肿瘤的效果。70%的肿瘤患者在整个治疗......阅读全文

永磁磁共振和超导磁共振的区别

超导磁共振中产生磁场的方式不同,利用高温超导材料制成的线圈产生高场强稳定磁场,临床上已3T、1.5T等已经很普遍了。永磁一般采用铁磁材料充磁之后形成的磁场,场强较低,一般不超过0.5T。场强高,别的不说,信噪比号。但是价钱和维护费用高很多~

核磁共振

  发现病变  核磁共振成像是一种利用核磁共振原理的最新医学影像新技术,对脑、甲状腺、肝、胆、脾、肾、胰、肾上腺、子宫、卵巢、前列腺等实质器官以及心脏和大血管有绝佳的诊断功能。与其他辅助检查手段相比,核磁共振具有成像参数多、扫描速度快、组织分辨率高和图像更清晰等优点,可帮助医生“看见”不易察觉的早期

核磁共振波谱仪核磁共振谱仪定义

核磁共振(nuclear magnetic resonance, NMR)是磁矩不为零的原子核,在外磁场作用自旋能级发生蔡曼分裂,共振吸收某一定频率的射频辐射的物理过程。并不是是所有原子核都能产生这种现象,原子核能产生核磁共振现象是因为具有核自旋。原子核自旋产生磁矩,当核磁矩处于静止外磁场中时产生进

核磁共振现象

  (一)核有磁性  1.核由质子和中子组成  2.质子带正电,中子不带电  3.所以,原子核带正电的  4.另外,有些核具有内秉角动量(自旋)  5.奇数核子  6.奇数原子序数,偶数核子  因而核有磁性  磁矩 描述磁场强度与方向的矢量  自旋角动量  旋磁比,每个核都有一特定的值。有正有负,核

核磁共振应用

发现病变核磁共振成像是一种利用核磁共振原理的最新医学影像新技术,对脑、甲状腺、肝、胆、脾、肾、胰、肾上腺、子宫、卵巢、前列腺等实质器官以及心脏和大血管有绝佳的诊断功能。与其他辅助检查手段相比,核磁共振具有成像参数多、扫描速度快、组织分辨率高和图像更清晰等优点,可帮助医生“看见”不易察觉的早期病变,已

核磁共振概述

1945年Bloch和Purcell分别领导两个小组同时独立地观察到核磁共振(Nuclear Magnetic Resonance, NMR),他们二人因此荣获1952年诺贝尔物理奖。1991年诺贝尔化学奖授予R.R. Ernst教授,以表彰他对二维核磁共振理论及傅里叶变换核磁共振的贡献。这两次诺贝

核磁共振原理

1.原子核的自旋 图 核磁共振原理图核磁共振主要是由原子核的自旋运动引起的。不同的原子 核,自旋运动的情况不同,它们可以用核的自旋量子数I来表示。自旋量子数与原子的质量数和原子序数之间存在一定的关系,大致分为三种情况:I为零的原子核 可以看作是一种非自旋的球体;I为1/2的原子核可以看作是一种电荷分

核磁共振NMR

NMR(Nuclear Magnetic Resonance)为核磁共振。是磁矩不为零的原子核,在外磁场作用下自旋能级发生蔡曼分裂,共振吸收某一定频率的射频辐射的物理过程。核磁共振波谱学是光谱学的一个分支,其共振频率在射频波段,相应的跃迁是核自旋在核蔡曼能级上的跃迁。基本原理自旋量子数I不为零的核与

核磁共振波谱仪核磁共振的发生及过程

1.原子核在磁场中的能级分裂质子有自旋,是微观磁矩,磁矩的方向与旋转轴重合。在磁场中,这种微观磁矩的两种自旋态的取向不同,能量不再相等,磁矩与磁场同向平行的自旋态能级低于磁矩与磁场反向平行的自旋态,两种自旋态间的能量差△E与磁场强度H0成正比: 式中,h为普朗克常数;H0为磁场的磁场强度,单位为T(

云磁共振成像系统使用AI提升磁共振诊断效能

记者从厦门大学电子科学与技术学院获悉,该院电子科学系屈小波教授团队运用云计算和人工智能,开发出智能云脑成像系统。该系统具备磁共振装备的原始数据处理、图像重建、自动统计分析、人工智能零代码编程等功能,已成功应用于临床科研。近日,该团队分析了云磁共振成像系统的技术路线及应用前景,相关研究成果发表于磁共振

云磁共振成像系统使用AI提升磁共振诊断效能

记者从厦门大学电子科学与技术学院获悉,该院电子科学系屈小波教授团队运用云计算和人工智能,开发出智能云脑成像系统。该系统具备磁共振装备的原始数据处理、图像重建、自动统计分析、人工智能零代码编程等功能,已成功应用于临床科研。近日,该团队分析了云磁共振成像系统的技术路线及应用前景,相关研究成果发表于磁共振

核磁共振波谱仪核磁共振谱仪发展现状

二十世纪后半叶,NMR技术和仪器发展十分快速,从永磁到超导,从60MHz到800MHz的NMR谱仪磁体的磁场差不多每五年提高一点五倍,这是被NMR在有机结构分析和医疗诊断上特有功能所促进的。现在有机化学研究中NMR已经成为分析常规测试手段,同样,在医疗上MRI(核磁共振成像仪器)亦成为某些疾病的诊断

磁共振检查的简介

  磁共振检查(Magnetic Resonance,MR)是医学检查的一种方法,也是医学影像学的一场革命。生物体组织能被电磁波谱中的短波成分如X线等穿透,但能阻挡中波成分如紫外线、红外线及长波。  人体组织允许磁共振产生的长波成分如无线电波穿过,这是磁共振应用于临床的基本条件之一。

核磁共振是什么

核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域。为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MRI),核磁共振CT。MRI是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显

核磁共振(NMR)原理

以氢核为例,由于带电核的旋转,会产生一个微小的磁场,一般而言,自旋杂乱无章,但若将其置于较强磁场中,其必定沿着磁场的方向重新排列,当核的自旋轴偏离了外加磁场的方向时,核自旋产生的磁场即会与外磁场相互作用,使原子核除了自旋之外,还会沿着圆锥形的侧面围绕原来的轴摆动,(类似于陀螺的摆动),这种运动方式称

核磁共振的原理

核磁共振主要是由原子核的自旋运动引起的。不同的原子核,自旋运动的情况不同,它们可 以用核的自旋量子数I来表示。自旋量子数与原子的质量数和原子序数之间存在一定的关系,大致分为三种情况,如下表。分类质量数原子序数自旋量子数INMR信号I偶数偶数0无II偶数奇数1,2,3,…(I为整数)有III奇数奇数或

核磁共振的原理

NMR(核磁共振)nuclear magnetic resonance。A phenomenon in which transitionsin the magnetic energy states of the nuclei of atoms are induced when the atoms a

核磁共振波谱方法

  一种现代仪器分析法。在外加磁场B中,自旋量子数为I的核自旋可以有2I+1个不同的取向。例如1H,13C,19F,31P(I均为1/2),则有2个不同的取向。这是由于带正电荷的核自旋所产生的磁场,可以有与外磁场B相同的取向(具有位能E1),也可能相反(位能E2),在常态下,当E2>E1时,处于E1

磁共振的发展简史

磁共振是在固体微观量子理论和无线电微波电子学技术发展的基础上被发现的。1945年首先在顺磁性Mn盐的水溶液中观测到顺磁共振,第二年,又分别用吸收和感应的方法发现了石蜡和水中质子的核磁共振;用波导谐振腔方法发现了Fe、Co和Ni薄片的铁磁共振。1950年在室温附近观测到固体Cr2O3的反铁磁共振。19

什么是核磁共振

核磁共振(MRI)又叫核磁共振成像技术,是继CT 后医学影像学的又一重大进步。自20 世纪80 年代应用以来,它以极快的速度得到发展。其基本原理:是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能

什么是核磁共振

磁共振magneticresonance(MRI);固体在恒定磁场和高频交变电磁场的共同作用下,在某一频率附近产生对高频电磁场的共振吸收现象。在恒定外磁场作用下固体发生磁化,固体中的元磁矩均要绕外磁场进动。由于存在阻尼,这种进动很快衰减掉。但若在垂直于外磁场的方向上加一高频电磁场,当其频率与进动频率

核磁共振的原理

原子核的自旋。核磁共振主要是由原子核的自旋运动引起的。不同的原子核,自旋运动的情况不同,可以用核的自旋量子数I来表示。自旋量子数与原子的质量数和原子序数之间存在一定的关系。原子核是带正电荷的粒子,不能自旋的核没有磁矩,能自旋的核有循环的电流,会产生磁场,形成磁矩(μ)。当自旋核(spin nucle

核磁共振(NMR)实验

核磁共振(Nuclear Magnetic Resonance),是指具有磁矩的原子核在静磁场中,受电磁波(通常为射频电磁振荡波RF)激发,而产生的共振跃迁现象。1945年12月,美国哈佛大学珀塞尔(E. M. Purcell)等人,首先观察到石腊样品中质子(即氢原子核)的核磁共振吸收信号。1946

概述磁共振的分类

  具有不同磁性的物质在一定条件下都可能出现不同的磁共振。下面列出物质的各种磁性及相应的磁共振:各种磁共振既有共性又有特性。其共性表现在基本原理可以统一地唯象描述,而特性则表现在各种共振有其产生的特定条件和不同的微观机制。回旋共振来自载流子在轨道磁能级之间的跃迁,其激发场为与恒定磁场相垂直的高频电场

磁共振检查的原理

磁共振t1t2信号记忆顺口溜如下:T1加权成像(T1WI)是指突出组织T纵向弛豫差别。t1越短,指信号越强,t1越长,指信号越弱,t1一般用于观察解剖。由于核磁共振是磁场成像,没有放射性,所以对人体无害,是非常安全的。据了解,世界上既没有任何关于使用核磁共振检查引起危害的报道,也没有发现患者因进行核

核磁共振的原理

核磁共振,全称“核磁共振成像(MRI)”。是一种医学影像诊断技术,亦称“核磁共振成像术”。利用人体组织中某种原子核的核磁共振现象,将所得射频信号经过电子计算机处理,重建出人体某一层面的图像,并据此作出诊断。  1924年W.泡利为了解释原子光谱的某些结构,提出原子核具有角动量(即自旋)的假说。194

磁共振波谱仪部分

  主要包括射频发射部分和一套磁共振信号的接收系统。发射部分相当于一部无线电发射机,它是波形和频谱精密可调的单边带发射装置,其峰值发射功率有数百瓦至十五千瓦可调。接收系统用来接收人体反映出来的自由感应衰减信号。由于这种信号极微弱,故要求接收系统的总增益很高,噪声必须很低。一般波谱仪都采用超外差式接收

核磁共振的原理

NMR(核磁共振)nuclear magnetic resonance。A phenomenon in which transitionsin the magnetic energy states of the nuclei of atoms are induced when the atoms a

核磁共振的原理

核磁共振用NMR(Nuclear Magnetic Resonance)为代号。1.原子核的自旋核磁共振主要是由原子核的自旋运动引起的。不同的原子核,自旋运动的情况不同,它们可以用核的自旋量子数I来表示。自旋量子数与原子的质量数和原子序数之间存在一定的关系,大致分为三种情况,见表8-1。I为零的原子

磁共振多少钱

截止2019年12月,一般来说,县级医院做核磁共振价格为600元左右,级别高的医院收费要贵些。关于做核磁共振检查的费用,核磁共振检查费用是根据检查项目来定的,每个人的选择不同,所以很多时候检查费用也是有差别的另外,影响核磁共振检查费用的因素还包括地区和医院的差异性。一般不同等级医院做磁共振收费不一样