图像感知或影响时间感知
科学家研究发现,图像给人的观感不仅决定了它们被记住的程度,也决定了人们对看图像时过了多少时间的感知。研究结果或有助理解时间如何被感知,同时挑战了“普遍体内钟”的概念。相关研究近日发表于《自然—人类行为》。时间知觉是人类意识的一个特征,但大脑记录、理解时间的能力却少有研究。虽然有些研究提出有一个客观“体内钟”的假说,但其他研究却发现,人们遇到的刺激物的性质对时间的主观感知有着直接影响。乔治梅森大学的Martin Wiener和同事对170人开展了一系列实验,他们先让参与者用不同的时长观察各种图像,再问他们认为自己看了多久。研究者将这些结果与一个神经网络模型相结合,发现时间感知受到图像性质的影响,如场景大小、图像内杂物数量(如一个塞满的食品储藏室相对于一个空仓库),以及场景有多难忘。具体而言,大型场景和难忘的图像(通常对观察者来说更新颖、与其他图像差别更大的图像)似乎能让时间“膨胀”——也就是说,人们感知中自己看图像的时间超过了他们......阅读全文
决定图像获取条件,并获取图像
决定图像获取条件,并获取图像(1) 点击[Laser InterLocked]按钮,解除闪烁状态,使激光可以通过软件起振。(2) 选择要使用的激光/通道。(3) 确认样本时,TD处于[OUT]状态,点击[IN]按钮,并勾选TD的勾选框。(4) 在Pinhole的项目中选择要使用的激光
TEM图像类别
(1)明暗场衬度图像 明场成像(Bright field image):在物镜的背焦面上,让透射束通过物镜光阑而把衍射束挡掉得到图像衬度的方法。 暗场成像(Dark field image):将入射束方向倾斜2θ角度,使衍射束通过物镜光阑而把透射束挡掉得到图像衬度的方法。 (2)高分辨
merge-图像的处理
在 merge 图像的处理过程中,位移问题可用许多软件包通过 panning 操作恢复原始记录。通过 panning 操作校正一系列不同颜色图的过程中,需要样品上有一个固定的参考点,这个参考点在每一层图上都有。如不存在多标的样品参考点,就将多色的荧光微球稀释后加入样品中,用盖玻片进行封装前,在每个视
图像处理原理简介
所谓“图像”泛指所有实际存在含有某种消息的信号,如含有人、事、物等的照片,而红外线摄影所获得的信号,则表示某些物体的温度分布。所谓图像处理就是为了某种目的对图像的强度(灰度值)分布视为一连串整数值的集合,经由不断的运算执行某些特定的加工和分析。 图像处理涵盖的范围十分很广泛,但是,所采用的基本原理和
SEM图像分析软件
SEM图片是电子扫面的图片,把微观世界放大到几千甚至上万倍,这个图片是需要你结合自身的知识背景加以专业的判断才能得出的结论的,而不是有什么软件会告诉你什么图片能说明啥。
颗粒图像仪简介
颗粒图像仪拥有静态、动态两种测试方法。 静态方式使用改装的显微镜系统,配合高清晰摄像机,将颗粒样品的图像直观的反映到电脑屏幕上,配合相关的计算机软件可进行颗粒大小、形状、整体分布等属性的计算,并可以将测试结果输出为报告。 动态方式具有形貌和粒径分布双重分析能力。重建了全新循环分散系统和软件数
高光谱图像概述
光谱分辨率在10-2λ数量级范围内的光谱图像称为高光谱图像(Hyperspectral Image)。遥感技术经过20世纪后半叶的发展,无论在理论上、技术上和应用上均发生了重大的变化。其中,高光谱图像技术的出现和快速发展无疑是这种变化中十分突出的一个方面。通过搭载在不同空间平台上的高光谱传感器,
图像传感器简介
图像传感器是利用光电器件的光电转换功能。将感光面上的光像转换为与光像成相应比例关系的电信号。与光敏二极管,光敏三极管等“点”光源的光敏元件相比,图像传感器是将其受光面上的光像,分成许多小单元,将其转换成可用的电信号的一种功能器件。图像传感器分为光导摄像管和固态图像传感器。与光导摄像管相比,固态图
荧光图像的记录方法
荧光显微镜所看到的荧光图像,一是具有形态学特征,二是具有荧光的颜色和亮度,在判断结果时,必须将二者结合起来综合判断。结果记录根据主观指标,即凭工作者目力观察。作为一般定性观察,基本上可靠的。随着技术科学的发展,在不同程度上采用客观指标记录判断结果,如用细胞分光光度计,图像分析仪等仪器。但这些仪器记录
图像处理器简介
图像处理器是一类、合成等处理的软件。即指通过取样和量化过程将一个以自然形式存在的图像变换为适合计算机处理的数字形式,包括图片直方图、灰度图等的显示,图片修复,即指通过图像增强或复原,改进图片的质量。 包括去除噪点,修正数码照片的广角畸变,提高图片对比度,消除红眼等等,图片合成,即指将多张图片进
荧光图像的记录方法
荧光显微镜观察到的荧光图像具有形态特征,具有荧光颜色和亮度。在判断结果时,必须结合起来作出的判断。结果是根据主观指标,即工人的眼睛来记录的。作为一般的定性观测,它基本上是的。随着科技的发展,客观指标被用来记录判断结果,如使用细胞分光光度计、图像分析仪等仪器。但是,这些文书所记录的结果也必须与主观判断
荧光图像的记录方法
荧光显微镜所看到的荧光图像,一是具有形态学特征,二是具有荧光的颜色和亮度,在判断结果时,必须将二者结合起来综合判断。结果记录根据主观指标,即凭工作者目力观察。作为一般定性观察,基本上可靠的。随着技术科学的发展,在不同程度上采用客观指标记录判断结果,如用细胞分光光度计,图像分析仪等仪器。但这些仪器记录
扫描电镜图像处理
当在观察某个深孔内部细节时,孔内是黑的,而周边衬度合适。起因是内孔产生的大量信号电子被孔壁吸收,只有小部分跑出达到探测器,这个弱信号按常规放大,人眼看不见。提高图象衬度和亮度,孔内细节如果能看清,其周边就过亮了、人眼对图像衬度的察觉是有限的。图象处理的目的就是在探测器的后续阶段、通过各种图象处理技术
CCD图像传感器
CCD图像传感器文章来源:本站编译 CCD主要有以下几种类型: 面阵CCD:允许拍摄者在任何快门速度下一次曝光拍摄移动物体。 线阵CCD:用一排像素扫描过图片,做三次曝光——分别对应于红、绿、蓝 三色滤镜,正如名称所表示的,线性传感器是捕捉一维图像。初期应用于广告界
图像分析仪简介
图像分析仪又称图像分析系统(image analysis system),主要用来解决如何客观地较精确地用数字来表达存在于标本中的各种信息,可称为数学形态学。它已经成为一种公认的科学研究工具,并且逐渐展现出巨大的潜能。图像中包含着极其丰富的内容,是人们从客观世界中获得信息的重要手段,因此,正确地测
采集和图像处理技术
每一个通道的 offset 和 gain 都应该单独调节(设置背景为 0,饱和为 4095),以便每一个荧光团都显示在完整的 12 位范围里。然后,对每个图像进行单独处理。尽管这是采集和显示多色图像的一个很方便的方法,但样品中两个信号的实际相对强度没法测定,因为每个信号的采集都是为了满足整个 12
电子衍射图像TEM
电子衍射图像l 选区衍射(Selected area diffraction, SAD): 微米级微小区域结构特征。l 会聚束衍射(Convergent beam electron diffraction, CBED): 纳米级微小区域结构特征。l 微束衍射(Microbeam electron d
TEM电子衍射图像
电子衍射图像l 选区衍射(Selected area diffraction, SAD): 微米级微小区域结构特征。l 会聚束衍射(Convergent beam electron diffraction, CBED): 纳米级微小区域结构特征。l 微束衍射(Microbeam electron d
图像的共定位分析
图像的共定位分析一般经常用散点图表示( scatterplot),这个图将两套数据关联起来。散点图以二维图的形式描述了一幅图或一个感兴趣区域每个像素处一个通道对另一个通道的强度值(见图 3 和图 4)。作图时其中一个通道(通常是绿色)作为 x 轴,而另一个通道(通常是红色)作图时作为 y 轴,在横坐
图像像素强度值无关
S1(average)和S2(average)分别是第一个通道和第二个通道平均像素强度值。在 Pearson′s 系数里,原始像素强度值减去平均像素强度值。结果,系数值范围从-1到 1, -1 表示图像的像素之间完全没有重叠,而 1 表示完美的图像重叠。Pearson′s相关系数只解释了两个图像之间
高分辨TEM(HRTEM)图像
高分辨TEM(HRTEM)图像HRTEM可以获得晶格条纹像(反映晶面间距信息);结构像及单个原子像(反映晶体结构中原子或原子团配置情况)等分辨率更高的图像信息。但是要求样品厚度小于1纳米。 ▽ HRTEM光路示意图 ▽ 硅纳米线的HRTEM图像
沉降常数的图像分析
当离心刚开始时如果见到有快速沉降的峰,几分钟内就到达分析池底部,一般多是由于样品发生部分聚合形成快速沉降的高聚物。离心达速后样品的的记心图像显示一个对称的峰形,一般可以认为样品是离心均一的。但是对样品的真正均一性还应用其他方法进一步检测,如电泳,层析等。某些混合样品偶然亦会给出一个对称峰的。峰形通常
获取时间序列图像
获取时间序列图像 共聚焦显微镜的"Time-Series"功能,可以自动在实验者规定的时间内按照设定的时间间隔获取图像。只需设定所需的时间间隔以及所需图像数量,开启“Start T”功能键,即可进行实验。“Time-Series"功能大大减轻了实验者的劳动强度,对于荧光漂白恢复和钙离子成像等实验非
高光谱图像成像原理
光源相机(成像光谱仪+ccd)装备有图像采集卡的计算机是高光谱成像技术的硬件组成,其光谱的覆盖范围为200-400nm,400-1000nm,900-1700nm,1000-2500nm。其中光谱相机的主要组成部分为准直镜,光栅光谱仪,聚焦透镜以及面阵ccd。 其扫描过程是当ccd探测器在光学
高分辨TEM(HRTEM)图像
高分辨TEM(HRTEM)图像HRTEM可以获得晶格条纹像(反映晶面间距信息);结构像及单个原子像(反映晶体结构中原子或原子团配置情况)等分辨率更高的图像信息。但是要求样品厚度小于1纳米。 ▽ HRTEM光路示意图 ▽ 硅纳米线的HRTEM图像
美利用现代图像技术处理重绘高清版木卫二图像
美科研人员近日“绘制”出木卫二欧罗巴最好的一张“肖像”,这也是美国国家航空航天局( NASA)首次发布他们用现代图像技术处理后的版本。 该照片色彩分明,以最高的清晰度展示了木卫二表面的大部分地方。比如说,那些看起来呈蓝色和白色的地方存储着相对来说更为纯净的水冰,红褐色的部分则包含高浓度的“非冰
决定扫描电镜图像的形成和图像质量有哪些因素
扫描电镜观察的放大倍数在1万以下,通常比其他类型显微镜所观察到的图像更富有立体感,清晰度更高,层次细节更分明和丰富。扫描电子像具有这样的有点,与它本身的成像原理有密切的关系。要成功活的扫描电子图像,必须了解与图像形成和质量有关的因素,要获得一副细节清晰的图像,主要痛像元的数目,分辨率有关。要获
图像分析仪工作程序
使用者对硬件不需操纵,它们可完成复杂的运行过程,完整的计算机软件可按实际需要使其执行功能。对操作者来说,图像分析仪的实际操作很少,几乎完全是通过一个称为光电鼠标(mouse)的附件来操纵的。计算机屏幕上显示出多项指令,可由光电鼠标来指明你所需要的程序,光电鼠标可控制计算机屏幕上的一个光标,移动光
显微图像颗粒测试原理
通过对颗粒数量和每个颗粒投影所包含的像素数量的统计,计算出每个颗粒的等圆面积,从而得到颗粒的等圆面积直径,进而得到粒度分布,还能通过长径,短径计算出长径比和球形度等粒形参数。 图像颗粒分析系统包括光学显微镜、数字CCD 摄像头、图像处理与分析软件、电脑、打印机等部分组成。它是将传统的显微测量方法与现
解码大脑信号再现视觉图像
是否有可能仅根据大脑信号,就完全重建某人所看到的内容?瑞士洛桑联邦理工学院研究人员朝着这个方向迈出了重要的一步,他们引入了一种新算法构建的人工神经网络模型,能以令人印象深刻的准确度捕捉大脑动态。该研究发表在最新一期《自然》杂志上。这种新颖的机器学习算法——CEBRA植根于数学,可学习神经代码中的隐藏