二维材料可在室温下保存量子信息
英国剑桥大学卡文迪许实验室科学家首次发现,层状二维材料六方氮化硼(hBN)中的“单原子缺陷”可以将量子信息在室温下保留几微秒。相关论文发表在《自然·材料》杂志上。这一发现意义重大,因为能够在环境条件(室温)下拥有量子性质的材料十分罕见,此次发现还凸显了二维材料在推进量子技术方面的潜力。用共焦显微镜研究了六方氮化硼中的单自旋。艺术示意图展示的是物镜用线圈将激光聚焦在样品上以进行自旋微波控制。图片来源:埃莉诺·尼科尔斯/剑桥大学卡文迪许实验室在hBN中,单一的“原子缺陷”在环境条件下表现出自旋相干,并且这些自旋可以用光来控制。自旋相干性指的是一种电子自旋,能够随时间推移保留量子信息。此次研究结果显示,如果将特定的量子态信息传输到电子自旋上,这些信息就会被存储约百万分之一秒,这使该系统成为一个非常有前途的量子应用平台。虽然百万分之一秒很短,但难得的是这个系统不需要特殊条件,就可在室温下存储自旋量子态。hBN是一种超薄材料,由堆叠在一起......阅读全文
二维材料可在室温下保存量子信息
英国剑桥大学卡文迪许实验室科学家首次发现,层状二维材料六方氮化硼(hBN)中的“单原子缺陷”可以将量子信息在室温下保留几微秒。相关论文发表在《自然·材料》杂志上。这一发现意义重大,因为能够在环境条件(室温)下拥有量子性质的材料十分罕见,此次发现还凸显了二维材料在推进量子技术方面的潜力。用共焦显微镜研
二维材料可在室温下保存量子信息
英国剑桥大学卡文迪许实验室科学家首次发现,层状二维材料六方氮化硼(hBN)中的“单原子缺陷”可以将量子信息在室温下保留几微秒。相关论文发表在《自然·材料》杂志上。这一发现意义重大,因为能够在环境条件(室温)下拥有量子性质的材料十分罕见,此次发现还凸显了二维材料在推进量子技术方面的潜力。 用共焦
室温下量子材料实现“自旋”控制
科技日报北京8月16日电 (记者张佳欣)据《自然》杂志16日报道,英国剑桥大学领导的一个国际研究团队找到了一种控制有机半导体中光和量子“自旋”相互作用的方法,即使在室温下也能发挥作用,为潜在的量子应用开辟了新前景。几乎所有量子技术都涉及自旋。电子运动时通常会形成稳定的电子对,一个电子自旋向上,一个电
新材料可在室温下进行“量子翻转”
科技日报北京1月24日电 (记者张梦然)据最新一期英国《自然·通讯》报道,美国密歇根大学开发出一种半导体材料,可在室温条件下实现从导体到绝缘体的“量子翻转”,有助于开发新一代量子设备和超高效电子设备。研究人员在只有一个原子厚的二维硫化钽层中观察到,支持这种量子翻转的奇异电子结构以前只能在-37.8℃
扭一扭-二维材料变身人工量子平台
华盛顿2月26日电 一个国际研究小组在近日出版的《自然》杂志上发表论文称,他们开发出一种新系统,通过堆叠、扭曲两种二维材料,即可实现对单个激子的精确捕捉和操控。研究人员称,该研究成果为开发能精确监测激子的新型实验平台奠定了基础,有望推动量子新技术研发。 激子是与光子相互作用后产生的可移动的电
量子自旋液体首次在准二维材料内“现形”
据英国剑桥大学官方网站消息,英美两国科学家首次在准二维材料α-氯化钌(α-RuCl3)内,观察到一种新量子物态——量子自旋液体的“蛛丝马迹”。研究人员表示,最新研究或有助于量子计算机的研制。 量子自旋液体是一种神秘的量子物质形态,由物理学家菲尔·安德森于1973年提出。科学家们认为,它隐藏在
二维材料中首次实现核自旋量子位控制
据15日发表在《自然·材料》上的论文,美国普渡大学的研究人员通过使用光子和电子自旋量子位来控制二维(2D)材料中的核自旋,实现了在2D材料中写入和读取带有核自旋的量子信息。他们用电子自旋量子位作为原子尺度的传感器,首次在超薄六方氮化硼中实现了对核自旋量子位的实验控制。该研究工作拓展了量子科学和技
最大同类二维晶体出现,可用于研究量子材料
奥地利科学家近日发现了一种新的同类二维晶体,这一研究开辟了探索量子材料和构建量子计算机的新途径。研究结果已经发表在最新一期的《PRX量子》杂志上。据悉,奥地利科学家使用激光将105个带电钙原子冷却到了极低的温度,然后将它们挤压成了一个平板,并先后将其悬浮于一个离子陷阱中。研究人员使用推动力来探索钙原
室温操纵量子光流体实现突破
原文地址:http://news.sciencenet.cn/htmlnews/2023/11/511534.shtm
研究首次实现基于新型二维材料非线性的量子光源
量子光源作为量子光学系统必不可缺的部分,其小型化一直是人们研究的重点。近日,中国科学技术大学郭光灿院士团队与新加坡国立大学合作,在二维材料非线性量子光源研究中取得重大突破。 二维材料的层内晶体结构稳定,而原子层间的相互作用力要弱很多。基于这种特性,单层二维材料可以在保持原子尺度厚度的同时也保持
室温下工作的量子干涉仪问世
能广泛应用于医疗、勘测、考古等多个领域 据美国物理学会网近日报道,丹麦哥本哈根大学研究人员日前制造出一种可在室温下工作的量子干涉仪,能广泛应用于医疗、勘测、考古等多个领域。相关研究发表在最新一期的《物理评论快报》杂志上。 量子干涉仪是应用量子力学原理制成的超高灵敏度磁传感器,可检测出非常微
首个室温拓扑量子模拟器问世
美国伦斯勒理工学院研究人员制造出首个在室温下运行的强光物质相互作用拓扑量子模拟器,其宽度与人类发丝相当。这一装置将帮助物理学家研究物质和光的基本性质,支持从医学到制造业等诸多领域高效激光器的开发。相关论文发表在5月24日的《自然·纳米技术》杂志上。研究人员开发的光子拓扑绝缘体(艺术图)。图片来源:美
超低噪声系统实现室温量子“光学压缩”
原文地址:http://news.sciencenet.cn/htmlnews/2024/2/517731.shtm
磁性半导体在三维材料中保留二维量子特性
美国宾夕法尼亚州立大学和哥伦比亚大学领导的国际团队在新一期《自然·材料》杂志上发表了一项重要研究成果,展示了磁性半导体在三维材料中保持特殊的二维量子特性。这一突破为现实世界中的光学系统和高级计算应用提供了新的可能性。 尽管二维材料如石墨烯展示了广泛的功能,并具有革命性的潜力,但维持其在二维极限
有机室温磷光材料研究获进展
原文地址:http://news.sciencenet.cn/htmlnews/2023/9/508147.shtm近日,华东理工大学化学与分子工程学院、费林加诺贝尔奖科学家联合研究中心田禾院士、马骧教授团队在室温磷光材料构建方面取得新进展,相关成果分别在《美国化学会志·金》和《材料研究述评》上发表
人造蛋白催化室温下生成稳定量子点
美国普林斯顿大学研究人员在最新一期《美国国家科学院院刊》上发表论文称,他们首次利用实验室合成的蛋白质,在室温下制造出了硫化镉(CdS)量子点,这些纳米材料可广泛应用于从发光二极管显示屏到太阳能电池板等诸多领域,这一成果有助以更可持续的方式制造纳米材料。 研究负责人之一、化学教授迈克尔·赫克特解释
拓扑绝缘体内奇异量子效应室温下首现
科技日报北京10月27日电 (记者刘霞)据《自然·材料》杂志10月封面文章,美国科学家在研究一种铋基拓扑材料时,首次在室温下观察到了拓扑绝缘体内的独特量子效应,有望为下一代量子技术,如能效更高的自旋电子技术的发展奠定基础,也将加速更高效且更“绿色”量子材料的研发。 拓扑绝缘体是一种特殊的材料,内
量子材料概念溯源
今天,量子材料(Quantum Materials)是大家熟知的物理名词,对其的研究已经成为物理学中非常重要的科学前沿。人类从量子材料中获取的知识必将是凝聚态物理、粒子物理、材料科学、量子信息科学等多学科交叉融合的桥梁和基础。 最近美国Rutgers 大学教授、著名量子材料物理学家Sang-W
二维超固态量子气体首度问世
科学家首次在实验室中产生二维超固态量子气体。 量子气体非常适合研究物质相互作用的微观结果。奥地利科学院量子光学与量子信息研究所和因斯布鲁克大学等机构研究人员在实验室中首次实现了二维超固态量子气体。8月18日,相关论文刊登于《自然》。 科学家可以在实验室中精确地控制极冷气体云中的单个粒子,揭示
二维量子回流观测研究获进展
原文地址:http://news.sciencenet.cn/htmlnews/2023/11/512880.shtm
二维空间量子行走首次实现:有助实现“量子霸权”
据最新一期美国《科学·进展》杂志报道,上海交通大学金贤敏团队于近日实现了大规模三维集成光量子芯片,并演示了首个真正空间二维的随机行走量子计算。最新进展对于推进模拟量子计算的发展、实现“量子霸权”具有重大意义。 近年来,关于通用量子计算机的新闻屡见于报端,IBM、谷歌、英特尔等公司争相宣布实现了
磁性超导材料首次在室温下获得
俄罗斯量子中心科研人员首次在室温下获得了磁性超导材料。有关专家认为,借助该技术未来可创建不需要复杂和昂贵冷却装置的量子计算机。相关研究发表在《科学报告》杂志上。 通常情况下,量子效应可在基本粒子中观察到,只有在非常低的温度下能够观察到宏观量子现象。近年来,磁性超导材料吸引了科学家的注意。它是指含
基金委双清论坛“二维信息材料与器件技术”召开
原文地址:http://news.sciencenet.cn/htmlnews/2023/8/507156.shtm2023年8月21日—22日,国家自然科学基金委员会(以下简称自然科学基金委)第343期双清论坛“二维信息材料与器件技术”在北京召开。本次论坛由自然科学基金委信息科学部、数学物理科学部
石墨烯材料探路二维材料“新世界”
尽管芯片制程已经一步步逼近物理极限,人们对集成电路性能和尺寸的要求却丝毫没有降低。基于新结构、新原理的二维半导体器件以其独特的性能,有望解决硅基器件面临的“瓶颈”。然而,二维材料超薄的厚度(原子级厚度)使其十分脆弱,加工制造过程中极易造成材料损伤或掺杂,从而导致器件实际性能与预期存在巨大差异。
《自然·材料》室温导电超硬材料领域又有新进展
传统的碳/碳复合材料是由sp2杂化为主的不同碳材料组成的,例如,碳纤维增强热解碳材料。它们往往具有高的导电性和可观的强度,但由于组分内或组分之间存在着弱的范德华力,其力学性能很难得到进一步提升。解决途径之一是将金刚石引入碳/碳复合材料,然而由于金刚石中的共价键极强且已经饱和,难以通过化学方法将其破坏
二维超导材料观察磁激发态-为制造量子计算机开辟新途径
二维超导材料上的磁场“纳米星星” 法国和俄罗斯科学家日前在二维超导材料上发现一种特殊的磁场扰动,就像一个个微小的振荡星。这些激发态由掺入超导材料的磁性原子产生,这意味着“于渌—芝巴—鲁西诺夫”状态(YSR态)链不只是理论,在实验中也可以观察到。研究人员称,这一成果或为制造量子计算机开辟新途径。
拓扑量子体系长波室温新机理THz探测研究获进展
近日,中国科学院上海技术物理研究所研究员王林、陈效双和陆卫团队与意大利拉奎拉大学教授Antonio Politano团队、南京大学教授万贤纲团队合作,提出了C3V反演结构特征的第二类狄拉克半金属材料(Type-II Dirac Semimetal)太赫兹探测结构,揭示由本征对称性破缺导致的室温太
纠缠五重态首次在室温下实现量子相干
原文地址:http://news.sciencenet.cn/htmlnews/2024/1/516032.shtm
纠缠五重态首次在室温下实现量子相干
日本九州大学和神户大学科学家报告称,通过将发色团(一种吸收光并发出颜色的染料分子)嵌入金属有机框架,他们在室温下实现了量子相干。这是量子系统在不受周围噪声影响的情况下,保持量子状态的能力。最新研究标志着量子计算和量子传感技术领域的重大进步。相关论文发表于《科学进展》杂志。 量子计算和量子传感都
金属材料室温拉伸试验取样注意什么
拉伸试验是在对金属材料产品质量进行检测和评定过程中使用的最广泛的实验。但是,有很多因素都可以影响拉伸试验的结果,只有明确了具体的影响因素,才能针对这些影响因素进行具体分析。根据研究分析结果制定实验相关操作规定和试验流程,才能保证实验结果的真实性和精确性。1.取样以及试样制备对实验结果的影响1.1.取