蒋华良等离子通道结构功能研究与药物设计获进展

GPCR和激酶等靶标存在较为明确的内源性配体结合口袋,其激动剂类药物一般是作用于该口袋,在一定程度上取代(模仿)内源性激动剂的功能。针对 GPCR和激酶开展的基于结构的药物设计已有很多成功案例。与这些受体和激酶不同,电压门控通道是被电压激活,没有明确的常规内源性配体结合口袋。确证激动剂的作用位点是电压门控通道研究领域的难点之一,通过基于结构的药物设计发现电压门控通道激动剂也进而面临很大挑战。 KCNQ2是癫痫相关的一类电压门控钾离子通道。上海药物所蒋华良课题组和神经药理学国际科学家工作站研究人员通过综合运用动力学模拟、分子对接、定点突变和电生理测试等方法,发现了一个位于通道门控电荷通路(gating charge pathway)中的激动剂结合口袋。针对该口袋,开展了虚拟筛选和药物设计,从20万个化合物中挑选出25个候选分子。经电生理测试确认9个KCNQ2 新激动剂,其中两个在两类动物模型中表现出优异的抗癫......阅读全文

G蛋白主要的效应器及相关信息的转导途径介绍

(一)腺苷酸环化酶(AC)系统腺苷酸环化酶系统主要介导cAMP-蛋白激酶A途径,是激素调节物质代谢的主要途径。胰高血糖素、肾上腺素和促肾上腺皮质激素等与靶细胞质膜上的特异性受体结合,形成激素受体复合物而激活受体。活化的受体催化G蛋白形成αs-GTP。释放的αs-GTP能激活腺苷酸环化酶,催化ATP转

什么j生物膜离子通道

  生物膜离子通道(ion channels of biomembrane)是各种无机离子跨膜被动运输的通路。生物膜对无机离子的跨膜运输有被动运输(顺离子浓度梯度)和主动运输(逆离子浓度梯度)两种方式。被动运输的通路称离子通道,主动运输的离子载体称为离子泵。生物膜对离子的通透性与多种生命活动过程密切

递质门控离子通道的结构功能

中文名称递质门控离子通道英文名称transmitter-gated ion channel定  义神经和肌细胞突触后膜结合上专一性的细胞外神经递质才开放的离子通道。具有将化学信号转变为电信号的功能。能使突触后质膜的通透性发生改变,从而引起膜电位改变,促使神经冲动传递下去。应用学科细胞生物学(一级学科

电压门控离子通道的结构组成

电压门控离子通道(Voltage-gated Ion Channel)主要有钠、钾、钙等离子通道,通常由同一亚基的四个跨膜区段围成孔道,孔道中有一些带电基团(电位敏感器)控制闸门。

离子通道型受体的功能介绍

离子通道型受体(ionotropic receptor),离子通道型受体是一类自身为离子通道的受体。

离子通道型受体的功能介绍

离子通道型受体(ionotropic receptor),离子通道型受体是一类自身为离子通道的受体。这种离子通道受体与受电位控制的离子通道不同,它们的开放或关闭直接接受化学配体的控制,这些配体主要为神经递质。离子通道受体信号转导的最终作用是导致了细胞膜电位改变,即是通过将化学信号转变成为电信号而影响

生物膜离子通道的研究

在生物电产生机制的研究中发现了生物膜对离子通透性的变化。1902年J.伯恩斯坦在他的膜学说中提出神经细胞膜对钾离子有选择透过性。1939年A.L.霍奇金与A.F.赫胥黎用微电极插入枪乌贼巨神经纤维中,直接测量到膜内外电位差。1949年A.L.霍奇金和B.卡茨在一系列工作基础上提出膜电位离子假说,认为

院士伉俪Cell深度解析离子通道

  来自加州大学旧金山分校,霍德华休斯医学院等处的研究人员利用TMEM16F敲除小鼠模型,发现了细胞质膜上出现磷脂紊乱的一种新机制,磷脂紊乱是血小板凝固过程中血小板激活的一个关键前步骤,相关成果公布在Cell杂志上,在网络版Cell杂志上还可以观看到对文章几位作者的专访视频。   领导这一研究的是

离子通道型受体的基本介绍

离子通道型受体(ionotropic receptor),离子通道型受体是一类自身为离子通道的受体。这种离子通道受体与受电位控制的离子通道不同,它们的开放或关闭直接接受化学配体的控制,这些配体主要为神经递质。离子通道受体信号转导的最终作用是导致了细胞膜电位改变,即是通过将化学信号转变成为电信号而影响

Cell:离子通道的“阴阳调控系统”

  来自约翰霍普金斯大学的研究人员报道称,发现一种常见蛋白质在控制离子通道的开关上起着与以往认为的完全不同的作用。  钠离子通道和钙离子通道是细胞上非常关键的门户,允许钠离子和钙离子进入细胞。许多重要的生命过程都依赖于正确的钠离子和钙离子浓度,例如健康大脑中的信息交流和心脏收缩。以及许多其他的过程。

Cell解决离子通道的重要争议

  钠离子通道和钙离子通道是细胞上非常关键的门户,允许钠离子和钙离子进入细胞。许多重要的生命过程都依赖于正确的钠离子和钙离子浓度,例如健康大脑中的信息交流和心脏收缩。日前科学家们发现,细胞的钠离子通道和钙离子通道采用相同的方式,对离子的流入量进行控制。这项发表在Cell杂志上的成果,将有助于人们开发

激酶的作用

蛋白激酶作用于特定的蛋白质,并改变其活性。这些激酶在细胞的信号传导及其复杂的生命活动中起到了广泛的作用。其他不同的激酶作用于小分子物质(脂质、糖、氨基酸、核苷等等),或者为了发出信号,或者使它们为代谢中各种生化反应作好准备。

简述激素细胞膜受体介导的信号转导途径

细胞表面受体可以分成四大类,各自不同(1)离子通道型受体:结合配体后通过调控离子通道的开放,使细胞内外离子流进/出,完成跨膜信号转导(2)g蛋白偶联型受体通过胞内偶联的g蛋白,激活下游信号分子(3)催化性型受体二聚化,激活胞内激酶活性,传递信号(4)酶偶联型受体变构激活胞内区偶联的酶(如酪氨酸激酶)

大连化物所团队开发出一种检测酪氨酸磷酸化的新方法

  近日,我所生物分离与界面分子机制创新特区研究组(18T7组)卿光焱研究员与中药科学研究中心(2800组)梁鑫淼研究员合作,在蛋白质磷酸化研究方面取得新进展,开发出一种智能聚合物功能化的仿生离子通道器件,实现了酪氨酸磷酸化的实时感知与测量,并在酪氨酸激酶抑制剂筛选中展现出较好的应用潜力。  蛋白酪

生物膜离子通道的研究方法

离子通道结构和功能的研究需综合应用各种技术,包括:电压和电流钳位技术、单通道电流记录技术、通道蛋白分离、纯化等生化技术、人工膜离子通道重建技术、通道药物学、基因重组技术及一些物理和化学技术。

递质门控离子通道的基本概念

中文名称递质门控离子通道英文名称transmitter-gated ion channel定  义神经和肌细胞突触后膜结合上专一性的细胞外神经递质才开放的离子通道。具有将化学信号转变为电信号的功能。能使突触后质膜的通透性发生改变,从而引起膜电位改变,促使神经冲动传递下去。应用学科细胞生物学(一级学科

新型阳离子通道TRIC研究取得进展

  钙离子作为第二信使,在细胞生命活动中发挥重要作用。肌浆网/内质网膜上RyR受体和IP3R是钙离子释放的重要通道,而SERCA蛋白是钙库吸收钙离子的重要离子泵。这些蛋白质机器的顺利发挥功能有赖于一系列离子通道的共同参与和协同完成。新型离子通道TRIC在钙离子释放过程中提供反向离子电流,帮助钙离子顺

生物膜离子通道的功能特点

活体细胞不停地进行新陈代谢活动,就必须不断地与周围环境进行物质交换,而细胞膜上的离子通道就是这种物质交换的重要途径。人们已经知道,大多数对生命具有重要意义的物质都是水溶性的,如各种离子,糖类等,它们需要进入细胞,而生命活动中产生的水溶性废物也要离开细胞,它们出入的通道就是细胞膜上的离子通道。

自由基调控离子通道的研究

氧自由基(FORs)是生物体生命活动过程中产生的物质,在动物体中引起许多重要的生物化学及生理学现象。FORs作用于离子通道及受体复合物引发信号级联反应对细胞内代谢活动进行调控。研究发现,伴随着植物生长、激素活动及胁迫应激等不同生命过程,FORs形成并逐渐累积,同时累积的还有胞内钙离子。因此,研究人员

关于芋螺毒素的离子通道介绍

  电压门控离子通道超家族是由一大族结构相似的膜结合蛋白组成的,它们受跨膜电压变化的激活。这些蛋白质对单价阳离子具有不同的选择性,按照惯例被分为Ca2+,Na+,和K+通道。这些离子通道的最重要的生理作用是促使细胞电信号的产生、调整和转换。电压门控离子通道的主要孔洞形成α-亚基是由含有4个同源结构域

科学家破解离子通道难题

  5月13日,国际期刊Cell Research 在线发表了由中国科学院上海药物研究所研究员高召兵和中国科学院生物物理研究所研究员徐涛团队联合研究的最新科研成果。该项工作从全新角度研究并诠释了“一个电压门控钾离子通道需要几个电压感受单元”这一领域内极受关注的问题。  电压门控钾离子通道包括40余个

离子通道型受体的基本概念

离子通道型受体(ionotropic receptor)  ,离子通道型受体是一类自身为离子通道的受体。这种离子通道受体与受电位控制的离子通道不同,它们的开放或关闭直接接受化学配体的控制,这些配体主要为神经递质。离子通道受体信号转导的最终作用是导致了细胞膜电位改变,即是通过将化学信号转变成为电信号而

生物膜离子通道的功能特征

  离子通道依据其活化的方式不同,可分两类:一类是电压活化的通道,即通道的开放受膜电位的控制,如Na+、Ca2+、Cl-和一些类型的K+通道;另一类是化学物活化的通道,即靠化学物与膜上受体相互作用而活化的通道,如 Ach受体通道、氨基酸受体通道、Ca2+活化的K+通道等。  钠通道  各种生物材料中

新型阳离子通道TRIC研究取得进展

  钙离子作为第二信使,在细胞生命活动中发挥重要作用。肌浆网/内质网膜上RyR受体和IP3R是钙离子释放的重要通道,而SERCA蛋白是钙库吸收钙离子的重要离子泵。这些蛋白质机器的顺利发挥功能有赖于一系列离子通道的共同参与和协同完成。新型离子通道TRIC在钙离子释放过程中提供反向离子电流,帮助钙离子顺

电压门控离子通道研究取得重要进展

  电压门控钠离子通道简称“钠通道”位于细胞膜上,能够引发和传导动作电位,参与神经信号传递、肌肉收缩等重要生理过程。 钠通道的异常会导致诸如痛觉失常、癫痫、心率失常等一系列神经和心血管疾病。另一方面,很多已知的生物毒素以及临床上广泛应用的麻醉剂等小分子均通过直接作用于钠通道发挥作用。因此,钠通道是诸

中科院Cell发现重要离子通道

  来自中科院、克利夫兰州立大学、清华大学的研究人员证实,TMCO1是一个内质网Ca2+过载激活的Ca2+通道。这一重要的研究发现发布在5月19日的《细胞》(Cell)杂志上。  中科院动物研究所的唐铁山(Tie-Shan Tang)研究员及克利夫兰州立大学周爱民(Aimin Zhou)教授是这篇论

生物膜离子通道的功能特征

离子通道依据其活化的方式不同,可分两类:一类是电压活化的通道,即通道的开放受膜电位的控制,如Na+、Ca2+、Cl-和一些类型的K+通道;另一类是化学物活化的通道,即靠化学物与膜上受体相互作用而活化的通道,如 Ach受体通道、氨基酸受体通道、Ca2+活化的K+通道等。钠通道各种生物材料中,与电兴奋相

离子通道型受体的基本概念

离子通道型受体(ionotropic receptor) ,离子通道型受体是一类自身为离子通道的受体。

Science首次发现光控阴离子通道

  亿万年前,当一个真核细胞捕获了一种红藻后,Guillardia theta海藻就形成了。近期一组研究人员在这种藻类中发现了首个光控负离子通道:Anion Channel Rhodopsins,并利用这种通道介导神经元沉默,相比于目前已有的最高效光遗传蛋白,这种新方法只需其千分之一的光强度,而且速

生物膜离子通道的功能特征

离子通道依据其活化的方式不同,可分两类:一类是电压活化的通道,即通道的开放受膜电位的控制,如Na+、Ca2+、Cl-和一些类型的K+通道;另一类是化学物活化的通道,即靠化学物与膜上受体相互作用而活化的通道,如 Ach受体通道、氨基酸受体通道、Ca2+活化的K+通道等。钠通道各种生物材料中,与电兴奋相