光电流光谱技术与原子荧光法联用测定激光波长

摘要:激光波长仪可在一定精度内测定激光波长,但在激光光谱学和激光分离同位素的应用研究中,不能保证测得的波长已与原子的某一跃迁共振。而光电流光谱技术恰好具有及时地反映这种共振的性能,激光激发原子荧光法的应用又为复杂原子谱线的认定提供准确可靠的依据C1}。我们联用这两种技术简便快速而又准确无误地分别测定了与铀、佣原子一些非精细结构高分辨谱线中某一成分共振的激光波长。点击这里进入下载页面:进入下载页面......阅读全文

原子荧光光谱的技术特点

灵敏度高:荧光分析的最大特点是灵敏度高,通常情况下要比分光光度计的灵敏度高出2-3个数量级。选择性强:包括激发光谱和发射光谱,在鉴定物质时,通过选择波长可以使分子荧光分析有多种选择。试样量少和方法简便。能提供比较多的物理参数:如激发光谱、发射光谱、荧光强度、量子产率、荧光寿命、荧光偏振等参数。这些参

原子荧光光谱仪联用技术

  离子色谱-蒸气发生/原子荧光及高效液相色谱-蒸气发生/原子荧光联用技术应用于砷、汞元素形态分析的新进展。  国际上对食品和环境科学中有毒、有害有机污染物高度重视,且在有机污染物的监测分析有了很大发展。人们已越来越认识到砷、汞、硒、铅、镉等元素不同化合物的形态其作用和毒性存在巨大的差异。例如砷是一

原子荧光光谱仪的技术优势

  北京博晖创新光电技术股份有限公司(以下简称:博晖)是一家集分析仪器、体外诊断产品的研发、生产、销售及售后服务为一体的高新技术企业,拥有多项ZL技术。  博晖原子荧光光谱法重金属检测系统是由博晖公司自主研发的原子荧光光度计和原子荧光形态分析仪组成。原子荧光光度计采用高强度空芯阴极灯作为激发光源,结

双道原子荧光光谱仪主要技术特点

1、适用于样品中砷、汞、硒、铅、锗、锡、锑、铋、镉、碲、锌、金等十二种元素痕量分析。2、双通道双元素同时测定。3、可升级进口注射泵与蠕动泵联用的内置式断续流动进样装置。4、管阀应用:摒弃了传统的单向阀、多道通阀。(可配置电磁阀)5、可实现断续进样及连续进样方式两种进样方式。6、蠕动泵进样与注射泵进样

原子荧光光谱介绍

原子荧光光谱是1964年以后发展起来的分析方法。原子荧光光谱法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。但所用仪器与原子吸收光谱法相近。原子荧光光谱分析法具有很高的灵敏度,校正曲线的线性范围宽,能进行多元素同时测定。 原子荧光光谱是介于原子发射光谱和原子吸收光谱之间的光谱分析

原子荧光光谱详解

  原子荧光光谱法(AFS)是一种痕量分析技术,是原子光谱法中的一个重要分支。是介于原子发射光谱法(AES)和原子吸收光谱法(AAS)之间的光谱分析技术 ,所用仪器及操作技术与原子吸收光谱法相近。  (一)AFS的发展历程  •1859年开始原子荧光理论的研究  •1902年首次观察到钠的原子荧光 

原子荧光光谱技术培训交流会通知

  为进一步提高高校优质仪器设备资源的利用率,帮助中小企业开展科研人才队伍建设、提升科研人才的大型贵重仪器理论知识水平和实际操作技能,提高仪器企业的科技创新能力和核心竞争力,北京科学仪器装备协作服务中心委托首都科技条件平台北京大学研发实验服务基地,组织技术专家和学术专家,面向企业用户开展大型仪器设备

原子荧光光谱仪原子荧光分类(一)

  当自由原子吸收了特征波长的辐射之后被激发到较高能态,接着又以辐射形式去活化,就可以观察到原子荧光。原子荧光可分为三类:共振原子荧光、非共振原子荧光与敏化原子荧光。  共振原子荧光  原子吸收辐射受激后再发射相同波长的辐射,产生共振原子荧光。若原子经热激发处于亚稳态,再吸收辐射进一步激发,然后再发

原子荧光光谱仪原子荧光分类(二)

  非共振原子荧光  当激发原子的辐射波长与受激原子发射的荧光波长不相同时,产生非共振原子荧光。非共振原子荧光包括直跃线荧光、阶跃线荧光与反斯托克斯荧光,  直跃线荧光是激发态原子直接跃迁到高于基态的亚稳态时所发射的荧光,如Pb405.78nm。只有基态是多重态时,才能产生直跃线荧光。阶跃线荧光是激

原子荧光光谱仪原子荧光分类(三)

  敏化原子荧光  激发原子通过碰撞将其激发能转移给另一个原子使其激发,后者再以辐射方式去活化而发射荧光,此种荧光称为敏化原子荧光。火焰原子化器中的原子浓度很低,主要以非辐射方式去活化,因此观察不到敏化原子荧光。

原子荧光光谱仪

原子荧光光度计利用惰性气体氩气作载气,将气态氢化物和过量氢气与载气混合后,导入加热的原子化装置,氢气和氩气在特制火焰装置中燃烧加热,氢化物受热以后迅速分解,被测元素离解为基态原子蒸气,其基态原子的量比单纯加热砷、锑、铋、锡、硒、碲、铅、锗等元素生成的基态原子高几个数量级。

原子荧光光谱仪

原子荧光光度计利用惰性气体氩气作载气,将气态氢化物和过量氢气与载气混合后,导入加热的原子化装置,氢气和氩气在特制火焰装置中燃烧加热,氢化物受热以后迅速分解,被测元素离解为基态原子蒸气,其基态原子的量比单纯加热砷、锑、铋、锡、硒、碲、铅、锗等元素生成的基态原子高几个数量级。 利用原子荧光谱线的波长

原子荧光光谱的现状

        根据文献报道,HG-AFS主要在中药中砷、汞、硒、镉、铅、锑和锗等金属元素分析中得到了应用,但由于许多试样中金属元素含量较低,且基体较为复杂,还需要进一步提高检测方法的灵敏度和重现性;而对中药中铋、锡和碲等元素的分析尚未见报道,其应用技术还需进一步研究。         样品的污染和

什么是原子荧光光谱

原子荧光光谱(AFS):典型原子荧光检测过程是以氢化物/冷蒸气发生方式实现样品的导入,氩氢扩散火焰原子化器实现被测元素的原子化,自由原子被空心阴极灯激发后发射的原子荧光,以无色散光路被 光 电 倍 增 管 接 收,获 得 原 子 荧 光 信 号。理 论 上,AFS兼具AES和AAS的优点,同时也克服

原子荧光光谱的概念

原子荧光光谱(AFS):典型原子荧光检测过程是以氢化物/冷蒸气发生方式实现样品的导入,氩氢扩散火焰原子化器实现被测元素的原子化,自由原子被空心阴极灯激发后发射的原子荧光,以无色散光路被 光 电 倍 增 管 接 收,获 得 原 子 荧 光 信 号。理 论 上,AFS兼具AES和AAS的优点,同时也克服

原子荧光光谱的特点

理 论 上,AFS兼具AES和AAS的优点,同时也克服了两者的不足,但是,由于AFS存在散射光干扰及荧光猝 灭 严 重 等 固 有 缺陷,使得该方法对激发光源和原子化器有较高的要求。

原子荧光光谱仪

原子荧光光度计利用惰性气体氩气作载气,将气态氢化物和过量氢气与载气混合后,导入加热的原子化装置,氢气和氩气在特制火焰装置中燃烧加热,氢化物受热以后迅速分解,被测元素离解为基态原子蒸气,其基态原子的量比单纯加热砷、锑、铋、锡、硒、碲、铅、锗等元素生成的基态原子高几个数量级。

原子荧光光谱的概念

原子荧光光谱是1964年以后发展起来的分析方法。原子荧光光谱法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。但所用仪器与原子吸收光谱法相近。原子荧光光谱分析法具有很高的灵敏度,校正曲线的线性范围宽,能进行多元素同时测定。 原子荧光光谱是介于原子发射光谱和原子吸收光谱之间的光谱分析

原子荧光光谱的分类

原子荧光可分为 3类:即共振荧光、非共振荧光和敏化荧光,其中以共振原子荧光最强,在分析中应用最广。共振荧光是所发射的荧光和吸收的辐射波长相同。只有当基态是单一态,不存在中间能级,才能产生共振荧光。非共振荧光是激发态原子发射的荧光波长和吸收的辐射波长不相同。非共振荧光又可分为直跃线荧光、阶跃线荧光和反

原子荧光光谱法

方法提要在一定酸度下,溴酸钾与溴化钾反应生成溴,可将试样消解,使所含汞全部转化为二价无机汞,用盐酸羟胺还原过剩的氧化剂,再用氯化亚锡将二价汞还原为单质汞,用氩气作载气,将其引入原子荧光光谱仪测量荧光强度。方法最低检测质量为0.5ng。取5mL水样测定,检测下限为0.1μg/L。仪器和装置无色散原子荧

原子荧光光谱的分类

原子荧光可分为 3类:即共振荧光、非共振荧光和敏化荧光,其中以共振原子荧光最强,在分析中应用最广。共振荧光是所发射的荧光和吸收的辐射波长相同。只有当基态是单一态,不存在中间能级,才能产生共振荧光。非共振荧光是激发态原子发射的荧光波长和吸收的辐射波长不相同。非共振荧光又可分为直跃线荧光、阶跃线荧光和反

学习荧光技术-原子荧光光谱技术培训交流会在京举办

  分析测试百科网讯 2018年11月25日,由首都科技条件平台检测与认证领域中心主办、首都科技条件平台北京大学研发实验服务基地承办、首都科技条件平台生物医药领域中心协办的“原子荧光光谱技术培训交流会”在华腾科技大厦隆重召开。本次会议共有80余人参与。分析测试百科网作为此次会议的支持媒体,为您全程跟

原子荧光联用技术

联用技术离子色谱-蒸气发生/原子荧光及高效液相色谱-蒸气发生/原子荧光联用技术应用于砷、汞元素形态分析的新进展。国际上对食品和环境科学中有毒、有害有机污染物高度重视,且在有机污染物的监测分析有了很大发展。人们已越来越认识到砷、汞、硒、铅、镉等元素不同化合物的形态其作用和毒性存在巨大的差异。例如砷是一

原子荧光检测技术

原子荧光(Atomic fluorescence) 是原子通过光辅助而发射出来的光,其本质是一种发射光谱,但这种发射光谱有几个前提条件,一、原子产生的,二、需要特殊的光照在这些原子上,原子荧光技术即用检测器检测这些原子产生的荧光。说到这里,化学实验人员可能就会产生疑惑,什么检测器可以测定荧光的多少呢

荧光光谱的原子荧光光谱的分类

原子荧光可分为 3类:即共振荧光、非共振荧光和敏化荧光,其中以共振原子荧光最强,在分析中应用最广。共振荧光是所发射的荧光和吸收的辐射波长相同。只有当基态是单一态,不存在中间能级,才能产生共振荧光。非共振荧光是激发态原子发射的荧光波长和吸收的辐射波长不相同。非共振荧光又可分为直跃线荧光、阶跃线荧光和反

原子荧光光谱法测定牡蛎中的镉含量原子荧光谱仪

利用HN03-HCl04混合酸消解样品,采用氢化物发生-原子荧光光谱法测定牡蛎中镉的含量。在优化的仪器工作条件下,镉的质量浓度在0.20~1.50μg/L范围内与荧光强度呈良好的线性关系,线性相关系数为0.9992,检出限为0.10μg/L,测定结果的相对标准偏差为4.48%(n=12),加标回收率

原子荧光光谱仪-原子荧光光谱仪的光源种类、工作原理

激发光源是原子荧光光谱仪的主要组成部分。在一定条件下荧光强度与激发光源的发射强度成正比,因此一个理想的光源应当具有下列条件:①发射强度高,无自吸②稳定性好,噪声小③发射的谱线窄且纯度高:④价格便宜且有足够长的使用寿命,⑤操作简便,不需复杂的电源,③适用于各种元素分析,即能制造出各种元素的同类型的灯。

曝光过程是直读光谱仪光电流向积分电容中充电过程

  在直读光谱仪分析中,对试样的激发需要一段预燃时间。试样在充有氩气的火花室中激发,空气绝大部分被赶跑,所以激发放电中选择性氧化的影响、氧化吸收紫外线的影响就比较小,但依然存在着复杂的物理化学过程,如蒸发、扩散的过程等。  直读光谱仪必须经过一定的时间后,才能达到稳定的放电,即各元素谱线的绝对强度和

曝光过程是直读光谱仪光电流向积分电容中充电过程

  在直读光谱仪分析中,对试样的激发需要一段预燃时间。试样在充有氩气的火花室中激发,空气绝大部分被赶跑,所以激发放电中选择性氧化的影响、氧化吸收紫外线的影响就比较小,但依然存在着复杂的物理化学过程,如蒸发、扩散的过程等。   直读光谱仪必须经过一定的时间后,才能达到稳定的放电,即各元素谱线的绝对强

原子荧光光谱仪和原子荧光光度计

原子荧光光谱仪及原子荧光光度计利用惰性气体氩气作载气,将气态氢化物和过量氢气与载气混合后,导入加热的原子化装置,氢气和氩气在特制火焰装置中燃烧加热,氢化物受热以后迅速分解,被测元素离解为基态原子蒸气,其基态原子的量比单纯加热砷、锑、铋、锡、硒、碲、铅、锗等元素生成的基态原子高几个数量级。