我科学家揭开多纤毛细胞的中心粒扩增之谜
近日,国际学术期刊《自然・细胞生物学》以封面论文形式在线发表了中科院上海生物化学与细胞生物学研究所朱学良研究组的研究论文。该研究发现,在高等动物中,一对同源蛋白质Deup1和Cep63分别调控了多纤毛发生过程中“从无到有”和“母中心粒依赖”两种中心粒发生方式,以及它们与脊椎动物从海洋到陆地的适应和进化的联系。 纤毛是单细胞动物就已经出现的毛状细胞器,在多细胞动物中也广泛存在。它的基部有一个叫做“中心粒”的桶状细胞器。中心粒的产生通常需要依赖于 “母”中心粒,而且在细胞分裂周期中严格执行“一胎制”。因此,多纤毛细胞所需的大量中心粒从何而来一直困扰着科学界。此前,科学家曾发现,在多纤毛发生过程中,母中心粒打破了“一胎制”;而且发现中心粒在一种环状结构(暂且称为“摇篮体”)的周围也能形成(即“从无到有”)。然而,人们对“摇篮体”的分子组成和作用机理,几乎一无所知。 朱学良研究组在研究中发现了“摇篮体”的一个关键蛋白......阅读全文
中国科学家揭开多纤毛细胞中心粒扩增之谜
中科院上海生物化学与细胞生物学研究所研究员朱学良等人在最新研究中,揭开了多纤毛细胞中心粒扩增之谜,并发现其与脊椎动物适应从海洋到陆地以及进化之间的联系。相关论文日前在线发表于《自然—细胞生物学》,并将作为杂志封面论文发表。 纤毛既可作为细胞的运动器官,也可作为感觉器官。纤毛基部有一个叫作“
EMBO:多纤毛细胞摇篮体发生与亲本中心粒的关系
国际学术期刊EMBO Reports在线发表了中国科学院生物化学与细胞生物学研究所朱学良研究组的最新研究成果“Parental centrioles are dispensable for deuterosome formation and function during basal body
我科学家揭开多纤毛细胞的中心粒扩增之谜
近日,国际学术期刊《自然・细胞生物学》以封面论文形式在线发表了中科院上海生物化学与细胞生物学研究所朱学良研究组的研究论文。该研究发现,在高等动物中,一对同源蛋白质Deup1和Cep63分别调控了多纤毛发生过程中“从无到有”和“母中心粒依赖”两种中心粒发生方式,以及它们与脊椎动物从海洋到陆地的适应
生化与细胞所揭开多纤毛细胞的中心粒扩增之谜
11月18日,国际学术期刊《自然细胞生物学》(Nature Cell Biology)在线发表了中科院上海生科院生物化学与细胞生物学所朱学良研究组的研究论文The Cep63 paralog Deup1 enables massive de novo centriole biogenes
《Cell》:不对称的遗传
对于许多种类的细胞,初级纤毛起着导体和天线的作用。在感光细胞中纤毛已演变为易扩张的、充满色素的光子筛,而在嗅细胞中它则转而负责接触有气味的物质。过去纤毛一度被认为是捕获的内共生体,现在人们则相信它很大程度上是真核生物的创造物,而非原核生物捕获和兼并所产生。运动纤毛与细菌鞭毛相似,但却显示出几个重
中心粒的概念和结构特点
中心粒(centriole)动物、某些藻类和菌类细胞中的圆筒状细胞器。中心粒位于间期细胞核附近或有丝分裂细胞的纺锤体极区中心,有时移至细胞表面纤毛和鞭毛的基部,则称基粒。但用电子显微镜观察的结果表明,中心粒是圆筒状的小器官,两个中心粒往往垂直交叉在一起。已充分发育的中心粒,直径为0.16—0.4微米
关于中心粒的信息简介
亦称中心小体,是在光学显微镜下,在中心体中央部位所看到的可被色素深深染色的两个小粒。从而命名为中心粒。 动物、某些藻类和菌类细胞中的圆筒状细胞器。中心粒位于间期细胞核附近或有丝分裂细胞的纺锤体极区中心,有时移至细胞表面纤毛和鞭毛的基部,则称基粒。 但用电子显微镜观察的结果表明,中心粒是圆筒状
TMEM67基因的结构特点和主要功能
该基因编码的蛋白质定位于初生纤毛和质膜。该基因在中心粒向心尖膜的迁移和初生纤毛的形成中起作用已发现该基因编码不同亚型的多个转录变体。该基因缺陷是梅克尔综合征3型(MKS3)和Joubert综合征6型(JBTS6)的原因之一。
PNAS:细胞纤毛生长的关键蛋白
细胞表面存在微小而关键的毛发状结构,这一结构被称为纤毛(cilia)。日前,宾州大学和加州大学的研究团队鉴定了纤毛生长所需的关键蛋白,文章于一月二十七日发表在美国国家科学院院刊PNAS杂志上。这一发现对人类健康有重要的启示,因为缺乏纤毛会导致严重的疾病,例如多囊肾病、失明和神经学疾病。 “
中心粒的结构
通常,一个细胞中有两个中心粒,彼此成直角排列。每个中心粒的横切面上可以看到四周有9束微管,每束由三根微管组成称为三体微管,中央没有微管,这种结构模式称为 9(3)+0 排列。同样的,还有9(2)+2;9(3)+2等结构模式。
基因组所国际合作项目揭示中心粒卫星重组新机制
10月11日,中科院北京基因组研究所疾病基因组与个体化医疗实验室“百人计划”研究员杨运桂研究组Jannie Danielsen博士,与哥本哈根大学Niels Mailand教授合作完成的“中心粒卫星重组的细胞应激反应机制研究”取得重要进展,相关论文在欧洲分子生物学学会杂志The EMBO
TMEM67基因编码的功能和结构描述
该基因编码的蛋白质定位于初生纤毛和质膜。该基因在中心粒向心尖膜的迁移和初生纤毛的形成中起作用已发现该基因编码不同亚型的多个转录变体。该基因缺陷是梅克尔综合征3型(MKS3)和Joubert综合征6型(JBTS6)的原因之一。The protein encoded by this gene local
TMEM67基因突变因子与药物介绍
该基因编码的蛋白质定位于初生纤毛和质膜。该基因在中心粒向心尖膜的迁移和初生纤毛的形成中起作用已发现该基因编码不同亚型的多个转录变体。该基因缺陷是梅克尔综合征3型(MKS3)和Joubert综合征6型(JBTS6)的原因之一[由RefSeq提供,2008年11月]The protein encoded
朱学良小组发现小RNA或与纤毛病有关
中科院上海生科院生物化学与细胞生物学研究所朱学良小组揭示了一种由小RNA(小核糖核酸)调控纤毛发生的机制,相关研究成果近日在国际期刊《自然—细胞生物学》在线发表。 纤毛病是细胞上一种叫做纤毛的结构发生功能障碍所导致的疾病,其临床表现有多囊肾、进行性失明和耳聋、智障、内脏倒位(如心脏位于身
中心粒的主要特征
在光学显微镜下看到的一个或一对颗粒状的结构(中心粒),常为球形的细胞质所分化的透明区(中心球)包围者称为中心体。E. van贝内登1876年在蛔虫卵分裂时首次看到中心体。T. H. 博韦里1895年首次在观察蛔虫卵分裂时,在中心体中分辨出中心粒并加以命名。在电子显微镜下,每一颗粒是一对互相垂直的、由
关于中心粒的特征介绍
在光学显微镜下看到的一个或一对颗粒状的结构(中心粒),常为球形的细胞质所分化的透明区(中心球)包围者称为中心体。E. van贝内登1876年在蛔虫卵分裂时首次看到中心体。T. H. 博韦里1895年首次在观察蛔虫卵分裂时,在中心体中分辨出中心粒并加以命名。 在电子显微镜下,每一颗粒是一对互相垂
Science:重大进展!揭示纤毛二联微管组装机制
我们的大部分细胞都含有不能移动的初级纤毛(primary cilium),即一类用于传递来自周围环境的信息的天线。一些细胞还具有许多用于产生运动的移动性纤毛。纤毛的“骨架”由二联微管(microtubule doublet)组成。纤毛在组装或功能上的缺陷可引起称为纤毛病(ciliopathy)的
简述细胞质的中心体
中心体(centrosome)多位于细胞核周围,由一对互相垂直的中心粒(centriole)构成。中心粒呈是短圆筒状,长0.5μm直径为外0.2μm,由9组三联微管与少量电子致密的均质状物构成其壁。相邻的三联微管相互斜向排列,状如风车旋翼。在壁外侧有时可见9个球形的中心粒卫星(centriola
研究揭示保证运动性多纤毛精细结构正确组装的机制
中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)研究员朱学良研究组最新研究成果以Fibrogranular materials function as organizers to ensure the fidelity of multiciliary assembly为题,在线发
研究发现中心体复制调控新机制
来至美国梅奥医学中心的研究人员发现关于中心体复制调控的新机制,近日细胞生物学著名期刊《细胞科学杂志》(Journal of Cell Science)在线发表了这一研究成果。该项研究首次报道一个磷脂酰肌醇激酶分子参与调控中心体复制,对在分子水平上理解中心体复制过程具有重要意义,并有助于阐明中
上海生科院植生生态所合作在纤毛形成研究中获进展
8月18日,《自然-通讯》杂志在线发表了中国科学院上海生命科学研究院植物生理生态研究所卫青研究组与美国梅奥诊所及奥地利维也纳大学等研究组合作完成的题为The hydrolethalus syndrome protein HYLS-1 regulates formation of the cili
简述中心粒的基本功能
动物细胞中心粒主要有以下几方面的功能: (1)中心粒是微管的组织中心,中心粒的自发活动,可以使细胞质内存在的微管蛋白亚单位有条理地聚合起来,形成微管结构。 (2)中心粒与纺锤体的形成也有密切的关系,中心粒也是纺锤体微管的组织中心.如在一些生长快速的间期细胞中,在中心粒的周围可以看见有许多辐射
动物细胞中心粒的主要功能
动物细胞中心粒主要有以下几方面的功能:(1)中心粒是微管的组织中心,中心粒的自发活动,可以使细胞质内存在的微管蛋白亚单位有条理地聚合起来,形成微管结构。(2)中心粒与纺锤体的形成也有密切的关系,中心粒也是纺锤体微管的组织中心.如在一些生长快速的间期细胞中,在中心粒的周围可以看见有许多辐射状排列的微管
纤毛小根系统
中文名称纤毛小根系统英文名称rootlet system定 义纤毛虫和鞭毛虫中与鞭毛基体结合的微管系统。应用学科细胞生物学(一级学科),细胞结构与细胞外基质(二级学科)
Nature:自吞作用与纤毛生成之间的关系
初级纤毛是一种非运动性信号作用细胞器,见于胞质膜的一个特定区域,在那里它发挥两个功能:信号传导和探测环境提示如营养物水平等。本期Nature上发表的两篇互补的论文描述了纤毛生成与自吞作用之间的一个新颖联系。Zaiming Tang等人发现,在“中心粒随体”上发生的纤毛形成过程的一个负调控因子
关于细胞质的细胞器—中心粒的基本信息介绍
中心粒(centriole)这种细胞器的位置是固定的,具有极性的结构。在间期细胞中,经固定、染色后所显示的中心粒仅仅是1或2个小颗粒。而在电子显微镜下观察,中心粒是一个柱状体,长度约为0.3μm~0.5μm,直径约为0.15μm,它是由9组小管状的亚单位组成的,每个亚单位一般由3个微管构成。这些
鞭毛纲和纤毛纲的主要区别
没有区别鞭毛flagellum从一些原核细胞和真核细胞表面伸出的、能运动的突起。鞭毛较长,数目少;纤毛与鞭毛有相同的结构,但较短,数目多。细菌的鞭毛则有完全不同的结构。鞭毛一般长约150微米,纤毛5~10微米,两者直径相近,为0.15~0.3微米。大多数动物和植物的精子都有鞭毛。精子及许多原生动物都
淡水腹纤毛类的大量培养实验——培养淡水腹纤毛类
实验材料绿梭藻仪器、耗材培养基实验步骤1. 用剃刀或别的刀具将容器的底部割下,尽可能多保留容器壁。2. 尽可能多的切掉盖子的中央,但要保持盖子四周完整。3. 切下比框架大 1~2 英寸的 Nitex 滤膜,以便于安装到框架上。
关于中心粒的培养信息介绍
中心粒与基粒的结构相似,微管排列都是9+0型式。从横切面看,它是由9组微管所组成,每组又包括a、b、c三根井列的微管,称为三联体。整个中心粒的横切面图类似玩具风车。中心粒的外周没有膜结构,而是包埋在电子致密的颗粒之中。所有三联体的结构都相同,但只有最内层的a微管是完整的,b与c两根微管部分嵌合,
纤毛——细胞的小雷达
“纤毛疾病”是由编码纤毛-中心体复合体相关蛋白的基因突变所导致的一组疾病,这些疾病可以表现为多囊肾、失明、智力迟滞以及肥胖、糖尿病等。在这篇NEJM的文章Ciliopathies中,作者F. Hildebrandt等人向我们介绍了编码纤毛的基因突变以及下游信号转导通路异常在这些疾病的发生中所起的