新型混合电解液可提升金属电池循环性能

近日,电子科技大学材料与能源学院教授孙威团队在《自然—通讯》上报道了计算模拟指导的金属电池设计策略。金属负极凭借其溶解/沉积机制,在高安全性、高致密储能领域展现出巨大潜力。然而,其化学稳定性差、电化学可逆性不足以及有效利用率低等问题,仍是制约其实际应用的关键挑战。研究表明,金属离子的溶剂化结构和界面反应特性是提升其可逆性的核心因素。基于此,研究团队提出了一种多尺度计算模拟指导的定制化电解液设计策略,成功开发出一种新型混合电解液,显著提升了锌金属负极的可逆性和稳定性。在研究过程中,团队通过计算模拟指导,深入探究了电解液的结构特性、锌沉积形貌、可逆性及稳定性等关键问题。研究发现,该电解液具有独特的溶剂化结构,以紧密接触离子对形式存在,并形成了贫水的内亥姆霍兹层。得益于这种独特的体相和界面结构,锌金属负极的库仑效率突破性地达到了99.95%。这一超高的可逆性使得无负极锌金属电池在高载量、贫液条件下实现了近1000次循环的稳定运行,且容......阅读全文

新型混合电解液可提升金属电池循环性能

近日,电子科技大学材料与能源学院教授孙威团队在《自然—通讯》上报道了计算模拟指导的金属电池设计策略。金属负极凭借其溶解/沉积机制,在高安全性、高致密储能领域展现出巨大潜力。然而,其化学稳定性差、电化学可逆性不足以及有效利用率低等问题,仍是制约其实际应用的关键挑战。研究表明,金属离子的溶剂化结构和界面

研究提出锌金属电池双相电解液策略

原文地址:http://news.sciencenet.cn/htmlnews/2023/10/509931.shtm近日,中国科学院大连化学物理研究所研究员王二东团队在水系锌金属电池电解液研究方面取得新进展。团队提出了双相电解液策略,有效抑制了锌金属负极的枝晶生长和析氢反应,实现了锌金属电池的长寿

大连化物所发《能源快报》:提出锌金属电池双相电解液策略

  近日,我所燃料电池研究部醇类燃料电池及复合电能源研究中心金属燃料电池系统研究组(DNL0313组)王二东研究员团队在水系锌金属电池电解液研究方面取得新进展。该团队提出双相电解液策略,有效抑制了锌金属负极的枝晶生长和析氢反应,实现锌金属电池的长寿命运行。  水系锌金属电池具有高安全性、低成本、环境

大连化物所在水系锌金属电池电解液研究方面取得新进展

近日,中国科学院大连化学物理研究所研究员王二东团队在水系锌金属电池电解液研究方面取得新进展。团队提出了双相电解液策略,有效抑制了锌金属负极的枝晶生长和析氢反应,实现了锌金属电池的长寿命运行。相关成果发表在《美国化学会能源快报》上。电池电解液是介于电池正极和负极之间的媒介物质,被喻为电池的“血液”,是

研究提出高比能锂金属电池增强催化和电解液新思路

  近日,西安交大材料学院宋江选教授团队在高比能二次电池关键材料研究中,针对锂金属电池界面稳定性差、锂枝晶生长严重以及体相离子传输缓慢等问题,分别提出了电荷分离COF中间层增强阴离子选择性催化界面的新策略和无氟类胶束电解液设计的新思路,相关研究成果分别以《通过电荷分离COF中间层增强阴离子选择性催化

研究提出高比能锂金属电池增强催化和电解液新思路

近日,西安交大材料学院宋江选教授团队在高比能二次电池关键材料研究中,针对锂金属电池界面稳定性差、锂枝晶生长严重以及体相离子传输缓慢等问题,分别提出了电荷分离COF中间层增强阴离子选择性催化界面的新策略和无氟类胶束电解液设计的新思路,相关研究成果分别以《通过电荷分离COF中间层增强阴离子选择性催化作用

从40℃到60℃,新型电解液助力锂金属电池宽温域高效循环

  锂离子电池的理论能量密度有限,难以满足日益增长的能量需求。近日,西安交通大学化工学院教授唐伟联合东南大学教授吴宇平、上海交大副教授杲祥文、空间电源所研究员李永、德国卡尔斯鲁厄理工学院教授Stefano Passerini(斯特凡诺·帕塞里尼)组成的国际化创新团队基于对SEI化学的调控,设计了一种

上海硅酸盐所锂金属电池双功能电解液设计研究获进展

  与传统的石墨负极相比,锂金属负极具有高的理论比容量(3860 mAh/g)和极低的电化学电位,有望助力实现锂金属电池500 Wh/kg的能量密度目标。然而,不可逆的电极-电解质界面副反应、不可控的枝状锂生长、“死锂”积累以及过大的极化电位,导致电池安全和失效问题。匹配高镍三元正极有利于高能量密度

什么是锂电池电解液?

  锂电池电解液是电池中离子传输的载体。一般由锂盐和有机溶剂组成。电解液在锂电池正、负极之间起到传导离子的作用,是锂离子电池获得高电压、高比能等优点的保证。电解液一般由高纯度的有机溶剂、电解质锂盐、必要的添加剂等原料,在一定条件下、按一定比例配制而成的。

锂电池电解液的简介

  电解液,是锂电池中离子传输的载体,一般由高纯度的有机溶剂、电解质锂盐、必要的添加剂等原料,在一定条件下、按一定比例配制而成的。有机溶剂常见的有,碳酸乙烯酯(C3H4O3)、碳酸丙烯酯(C4H6O3)、碳酸二乙酯(C5H10O3)、碳酸二甲酯(C3H6O3)、碳酸甲乙酯等,它们很明显都是碳氢氧的化

介绍锂电池电解液种类

1液体电解液电解质的选用对锂离子电池的性能影响非常大,它必须是化学稳定性能好尤其是在较高的电位下和较高温度环境中不易发生分解,具有较高的离子导电率(>10-3S/cm),而且对阴阳极材料必须是惰性的、不能侵腐它们。由于锂离子电池充放电电位较高而且阳极材料嵌有化学活性较大的锂,所以电解质必须采用有机化

金属锂电池是什么电池?锂金属电池的工作原理

锂电池大致可分为锂金属电池和锂离子电池两类。锂金属电池是利用金属锂作为负极的电池,与其相搭配的正极材料可以是氧气、单质硫、金属氧化物等物质;锂离子电池不含有金属态的锂,并且是可以充电的。工作原理锂金属电池一般是使用二氧化锰为正极材料、金属锂或其合金金属为负极材料、使用非水电解质溶液的电池。放电反应:

物理所等利用新型电解液发展出长寿命锂金属软包电池

随着移动设备、电动汽车和大规模储能系统对能源需求的日益增长,开发具有更高能量密度、更长循环寿命和更高安全性能的电池变得尤为重要。锂金属电池因理论能量密度超过500 Wh kg-1而成为研究热点。而锂金属电池的商业化进程受限于其有限的循环寿命,这主要是由于电解液与电极界面稳定性较差。传统的电解液难以兼

物理所等利用新型电解液发展出长寿命锂金属软包电池

随着移动设备、电动汽车和大规模储能系统对能源需求的日益增长,开发具有更高能量密度、更长循环寿命和更高安全性能的电池变得尤为重要。锂金属电池因理论能量密度超过500 Wh kg-1而成为研究热点。而锂金属电池的商业化进程受限于其有限的循环寿命,这主要是由于电解液与电极界面稳定性较差。传统的电解液难以兼

锂电池的电解液是那种?

锂电池主要使用的电解质有高氯酸锂、六氟磷酸锂等。

锂离子电池电解液的简介

  电解液是化学电池、电解电容等使用的介质,用于不同行业其代表的内容相差较大。有生物体内的电解液(也称电解质),也有应用于电池行业的电解液,以及电解电容器、超级电容器等行业的电解液。  不同的行业应用的电解液,其成分相差巨大,甚至完全不相同。  例如,人体的电解质主要由水分和氯化钠、PH缓冲物质等组

锂电池电解液的基本介绍

  锂电池电解液是电池中离子传输的载体。一般由锂盐和有机溶剂组成。电解液在锂电池正、负极之间起到传导离子的作用,是锂离子电池获得高电压、高比能等优点的保证。电解液一般由高纯度的有机溶剂、电解质锂盐、必要的添加剂等原料,在一定条件下、按一定比例配制而成的。

锂离子电池电解液主要作用

锂离子电池作为一种便携式储能设备,广泛用于手机,笔记本电脑,相机,电动自行车,电动汽车等领域。其中锂电池电解液是一个不容忽视的方面。毕竟,占电池成本15%的电解质在电池能量密度,功率密度,宽温度应用,循环寿命和安全性能方面确实起着至关重要的作用。电解质是锂电池的四种关键材料之一:正极,负极,隔膜和电

锂离子电池电解液材料介绍

  锂离子动力电池电解液参与电池内部发生的所有反应,电池系统如果过充、过放、短路、热冲击则会使电池温度升高、电解液燃烧,导致电池起火甚至爆炸,因此,电解液的安全性至关重要,主要是有机溶剂溶解锂盐的溶液,锂盐主要有六氟磷酸锂(LiPF6)、高氯酸锂(LiClO4)、四氟硼酸锂(LiBF4)、六氟合砷酸

锂离子电池电解液的分类

锂离子电池电解液分两种,一种是酸性电解液,一种是碱性电解液,其重要成分前者是硫酸,后者是氢氧化钠,二者都具有强烈的腐蚀性,其危害不言而喻。

锂电池电解液注液方法

  锂电池注液生产时,一般用人工注液方式,进行一对一的注液加工,注液精度低、生产效率低、安全性差。  虽然现有技术中也出现了正向注液式和真空倒吸式两种形式的自动电解液注液机,但真空倒吸式注液方式对设备管路的密封性要求较高,密封条件苛刻;而正向注液方式也存在注液精度控制难度大的技术问题。  并且现有的

锂电池电解液的应用特点

锂电池主要使用的电解质有高氯酸锂、 六氟磷酸锂等。但用高氯酸锂制成的电池低温效果不好,有爆炸的危险,而用含氟锂盐制成的电池性能好,无爆炸危险,适用性强,特别是用六氟磷酸锂制成的电池,除上述优点外,将来废弃电池的处理工作相对简单,对生态环境友好,因此该类电解质的市场前景十分广泛。

锂电池电解液的结构组成

锂电池电解液是电池中离子传输的载体。一般由锂盐和有机溶剂组成。电解液在锂电池正、负极之间起到传导离子的作用,是锂离子电池获得高电压、高比能等优点的保证。电解液一般由高纯度的有机溶剂、电解质锂盐、必要的添加剂等原料,在一定条件下、按一定比例配制而成的。

锂电池电解液有哪些优势?

  锂电池主要使用的电解质有高氯酸锂、 六氟磷酸锂等。但用高氯酸锂制成的电池低温效果不好,有爆炸的危险,日本和美国已禁止使用。而用含氟锂盐制成的电池性能好,无爆炸危险,适用性强,特别是用六氟磷酸锂制成的电池,除上述优点外,将来废弃电池的处理工作相对简单,对生态环境友好,因此该类电解质的市场前景十分广

锂离子电池电解液技术介绍

作为锂离子电池的四大主材料之一,电解液在锂电池中,主要作为离子迁移的载体,保证离子在正负极之间的传输。电解液对电池安全性、循环寿命、充放电倍率、高低温性能、能量密度等性能指标都有一定影响。电解液一般由高纯度的有机溶剂、电解质锂盐和添加剂等原料按一定比例配制构成。按质量划分,溶剂质量占比 80%~90

主流锂电池电解液性能介绍

主流锂电池电解液主要由锂盐、溶剂和添加剂三类物质组成。电解液基本构成变化不大,创新主要体现在对新型锂盐和新型添加剂的开发,以及锂离子电池中涉及的界面化学过程及机理深入理解等方面。电解液材质工艺基本决定了电池的循环、高低温和安全性能。

金属锂电池是什么电池?

锂金属电池是利用金属锂作为负极的电池,与其相搭配的正极材料可以是氧气、单质硫、金属氧化物等物质;锂离子电池不含有金属态的锂,并且是可以充电的。

精确测量锂电池电解液的粘度

  电解液是锂离子电池四大关键材料(正极、负极、隔膜、电解液)之一,号称锂电池的血液,在电池中正负极之间起到传导电子的作用,是锂离子电池获得高电压、高比能等优点的保证。   锂电池充放电原理   离子电导率正是高性能电解液重要的指标,影响电解液离子电导率的三个影响因素有:锂盐的解离能力,电解液的

锂电池电解液的优势有哪些?

  锂电池主要使用的电解质有高氯酸锂、六氟磷酸锂等。但用高氯酸锂制成的电池低温效果不好,有爆炸的危险,日本和美国已禁止使用。而用含氟锂盐制成的电池性能好,无爆炸危险,适用性强,特别是用六氟磷酸锂制成的电池,除上述优点外,将来废弃电池的处理工作相对简单,对生态环境友好,因此该类电解质的市场前景十分广泛