人工神经元利用光实现神经形态计算

沙特阿卜杜拉国王科技大学研究团队开发出一种人工神经元,可利用光电实现神经形态计算。新技术模仿突触或神经元功能,可适应和重新配置其对光的响应进而完成计算。这项突破性进展发表在最新一期《光:科学与应用》杂志上。 团队利用二维材料二硒化铪设计并制造了金属氧化物半导体电容器(MOSCap)。这种器件采用了垂直堆叠结构,其中二硒化铪夹在两层氧化铝之间,并放置在p型硅衬底上。顶部覆盖有一层透明的氧化铟锡,允许光线从上方进入。当二硒化铪纳米片被集成到电荷捕获存储器件中时,能实现光学数据传感和保留功能,使其在光源移除后仍能重新配置以感应光或存储光学数据。 实验表明,MOSCap的电荷捕获和电容,会随着光照条件的变化而变化,从而能作为智能存储器,使用光信号进行训练和响应。例如,暴露于465纳米波长的蓝光,可增强对635纳米波长的红光的反应,这是一种被称为关联学习的行为。在神经形态计算中,MOSCap就像一个人工突触,能同时展示出长期增强(......阅读全文

人工神经元利用光实现神经形态计算

  沙特阿卜杜拉国王科技大学研究团队开发出一种人工神经元,可利用光电实现神经形态计算。新技术模仿突触或神经元功能,可适应和重新配置其对光的响应进而完成计算。这项突破性进展发表在最新一期《光:科学与应用》杂志上。  团队利用二维材料二硒化铪设计并制造了金属氧化物半导体电容器(MOSCap)。这种器件采

神经板的形态学结构

神经板亦称髓板。主要是脊索动物发生初期原肠形成终后于外胚层背侧正中产生的,呈球拍形,后部狭窄肥厚,其主要部分形成中枢神经系统和眼原基。神经板的末端在多数情况下是与闭合的原口相接。神经板的最后端的部位形成后躯干部和尾部的体节,其为中胚层性这一点,在两栖类已甚明确。随着发展的进展,神经板周围的外胚层隆起

简述神经板的形态学结构

  神经板亦称髓板。主要是脊索动物发生初期原肠形成终后于外胚层背侧正中产生的,呈球拍形,后部狭窄肥厚,其主要部分形成中枢神经系统和眼原基。  神经板的末端在多数情况下是与闭合的原口相接。神经板的最后端的部位形成后躯干部和尾部的体节,其为中胚层性这一点,在两栖类已甚明确。随着发展的进展,神经板周围的外

用于边缘AI的神经形态芯片问世

科技日报北京8月21日电 (实习记者张佳欣)一个国际研究团队设计并制造了一种直接在内存中运行计算的芯片,可运行各种人工智能(AI)应用,而且它能在保持高精度的同时,仅消耗通用AI计算平台所耗能量的一小部分,兼具高效率和通用性。相关研究发表在最近的《自然》杂志上。这款名为NeuRRAM的神经形态芯片使

神经形态视觉系统研究获进展

季华实验室副研究员张钰联合天津大学教授胡文平和杨方旭团队首次开发了基于超薄二维分子晶体的线偏振光敏感神经形态视觉系统,在单个器件中实现了偏振敏感性、光探测和突触行为等多种功能的高效集成。相关成果近日在线发表于《先进材料》(Advanced Materials)。在视觉科技不断发展的今天,神经形态视觉

神经形态计算:低功耗AI的未来途径

数据驱动的应用,特别是人工智能(AI)的日益普及,正在改变人类与技术的互动方式,也引发了人们对其进一步研究、开发和应用的浓厚兴趣,从而有效解决许多长期未解的复杂问题。不过,AI对环境的影响也愈发受到关注。为了应对低功耗系统执行复杂AI算法的挑战,神经形态技术是未来计算领域的有力竞争者,特别是在解决复

神经元的形态学结构介绍

  神经元是一种高度分化的细胞,具有感受刺激和传导冲动的功能。其形态多种多样,但都具有突起,因此可将神经元分为胞体和轴突两部分。胞体的形状和大小差别很大,有球形、锥体形、梨状、星状和颗粒状等。小的神经元胞体直径仅4~6微米,如小脑颗粒细胞。大的可达150微米,如大脑皮质内的大锥体细胞。胞体的结构与一

关于神经原纤维的形态结构简介

  形态  神经原纤维(neurofibril):在神经细胞质内,存在着直径约为2~3μm的丝状纤维结构,在银染的切片体本可清晰地显示出呈棕黑色的丝状结构,此即为神经原纤维,在核周体内交织成网,并向 树突和轴突延伸,可达到突起的末梢部位。  结构  HE染色切片无法辨别。在镀银染色切片中,呈棕黑色细

弹性半导体制成可穿戴神经形态芯片

  美国芝加哥大学普利兹克分子工程学院研究人员开发了一种灵活、可拉伸的计算芯片,该芯片通过模仿人脑来处理信息。发表在《物质》杂志上的该项成果有望改变健康数据的处理方式。  研究人员表示,这项工作将可穿戴技术与人工智能和机器学习相结合,创造出一种功能强大的设备,可直接分析人体的健康数据。目前,人们要深

科学家首次构建出脑神经形态芯片

  据每日科学网站7月23日(北京时间)报道,瑞士和美国的神经信息学研究人员携手,首次成功研制出一种新奇的微芯片,能够实时模拟大脑处理信息的过程。最新研究将有助于科学家们制造出能同周围环境实时交互的认知系统。   以前的类似研究都局限于在传统计算机上研制神经网络模型或在超级计算机上模拟复杂的神经网

微型神经形态设备模拟人类视觉和记忆

澳大利亚皇家墨尔本理工大学研究团队展示了一种捕捉、处理和存储视觉信息的神经形态设备。这种小型设备可用与人类相似的方式“看”并形成记忆,这项进步朝着开发出能做快速、复杂决策的应用程序(例如在自动驾驶汽车中)迈出了一大步。相关研究14日发表于《先进功能材料》杂志。这种神经形态设备是一种由掺杂氧化铟传感元

神经形态芯片:仿生学的驱动力

        1 神经形态芯片与传统芯片的区别  1946年美籍匈牙利科学家冯·诺依曼提出存储程序原理,把程序本身当作数据来对待。此后的半个多世纪以来,计算机的发展取得了巨大的进步,但“冯·诺依曼架构”中信息存储器和处理器的设计一直沿用至今,连接存储器和处理器的信息传递通道仍然通过总线来实现。随着

弹性半导体制成可穿戴神经形态芯片

美国芝加哥大学普利兹克分子工程学院研究人员开发了一种灵活、可拉伸的计算芯片,该芯片通过模仿人脑来处理信息。发表在《物质》杂志上的该项成果有望改变健康数据的处理方式。 研究人员表示,这项工作将可穿戴技术与人工智能和机器学习相结合,创造出一种功能强大的设备,可直接分析人体的健康数据。目前,人们要深入

新型有机忆阻器显著提高神经形态计算效率

华东理工大学化学与分子工程学院教授陈彧团队联合上海市智能感知与检测技术重点实验室,开发了一种新型共价有机框架(COF),显著降低了有机忆阻器的运行功耗,并提高了神经形态计算效率。相关研究在线发表于《德国应用化学》。为减少阵列中的器件数量、缩短数据写入时间、提高运行速度和效率,科学家正在努力将有机忆阻

瑞士研发“神经形态芯片”-可与真实大脑相媲美

  日前,由瑞士、德国和美国的科学家组成的研究小组首次成功研发出一种新奇的微芯片,能够实时模拟人类大脑处理信息的过程。这项新成果将有助于科学家们制造出能同周围环境实时交互的认知系统,为神经网络计算机和高智能机器人的研制提供强有力的技术支撑。   以前的类似研究都局限于在传统计算机上研制神经网络模型

模拟人脑的神经形态计算方式渐成学界热点

Kwabena Boahen手握着其神经网格设备中的神经形态回路板。   1982年,Kwabena Boahen得到了他的第一台电脑,那时他还是住在加纳阿克拉的一个十几岁的少年。“那真是一台很酷的机器。”他回忆道。在观察电脑如何工作时,他本能地感觉到,电脑需要在设计中多一些“非洲”的感觉:更

“蚂蚁级”感知,南开团队研获神经形态人工触角

触角是昆虫的主要感觉器官,能够精准感知微小振动、磁场方位、重力方向或化学刺激,其感知灵敏度可与人类皮肤相媲美,甚至在一些特殊功能上超过人类。然而,相比于模拟哺乳动物的感觉器官,如何模拟昆虫触角这一高灵敏、多功能的“探测器”,一直是仿生电子领域亟待攻克的难题。昆虫触角感觉器官的结构与功能为新型仿生传感

新型有机忆阻器显著提高神经形态计算效率

华东理工大学化学与分子工程学院教授陈彧团队联合上海市智能感知与检测技术重点实验室,开发了一种新型共价有机框架(COF),显著降低了有机忆阻器的运行功耗,并提高了神经形态计算效率。相关研究在线发表于《德国应用化学》。为减少阵列中的器件数量、缩短数据写入时间、提高运行速度和效率,科学家正在努力将有机忆阻

最大神经形态计算机研制成功

据英国《新科学家》杂志网站17日报道,英特尔公司研制出世界上最大的神经形态计算机Hala Point。它包含11.52亿个人造神经元,分布在1152个Loihi 2芯片上,每秒能进行380万亿次突触操作。英特尔公司希望,这种旨在模拟人脑处理和存储数据方式的计算机能提高人工智能(AI)模型的效率和能力

刘明院士团队:自旋神经形态器件研究新进展

  生物启发脉冲神经网络架构有望通过模拟人脑的高算力、高并行度、低功耗等特性,解决冯·诺依曼架构存储墙和能效瓶颈等问题。然而,面向构建脉冲神经网络的神经形态硬件的研究尚处于探索阶段,基于传统CMOS的神经形态芯片通常需要数十个晶体管和若干电容;基于新型存储器等新原理神经元器件亦需集成额外电容或复位操

时空稀疏小样本学习大规模神经形态数据集发布

近日,中科院自动化研究所研究员曾毅团队提出了一个用于时空稀疏小样本学习的大规模神经形态数据集——N-Omniglot,为脉冲神经网络的学习与训练提供了一个更具挑战性的基准。相关研究成果发表于自然出版社旗下期刊《科学数据》。 深度学习的成功在很大程度上归功于像ImageNet和COCO这样的数据集的引

最大神经形态计算机研制成功

Hala Point 神经形态计算机由英特尔的Loihi 2芯片提供动力。据英国《新科学家》杂志网站17日报道,英特尔公司研制出世界上最大的神经形态计算机Hala Point。它包含11.52亿个人造神经元,分布在1152个Loihi 2芯片上,每秒能进行380万亿次突触操作。英特尔公司希望,这种旨

神经形态通过模拟人脑运行方式进行高效率运算

  引言  神经形态设备(neuromorphic device)可以通过模拟人脑神经元的运行方式进行高效率运算。神经形态计算(neuromorphic computing)因此也可以用来对环境中的各种复杂刺激进行有效分析,可以在生物-电子接口中为生物传感提供智能响应。但是传统的神经形态计算需要使用

离子型二维材料用于神经形态计算获新进展

原文地址:http://news.sciencenet.cn/htmlnews/2023/7/505631.shtm

我国科学家在多模态神经形态感知研究方面获进展

躯体感受系统中的多模态感知可帮助人们获得更全面的物体属性,并对物体的状态做出准确判断。尤其是不同受体的感觉信号在一定的条件下还可被神经元整合并发送到大脑皮层作进一步处理(图1a)。与单模态感知相比,多模态融合感知在评估物体属性和提高物体识别精度方面具有明显优势。在传统的人工感知系统中,多

我国科学家在多模态神经形态感知研究方面获进展

躯体感受系统中的多模态感知可帮助人们获得更全面的物体属性,并对物体的状态做出准确判断。尤其是不同受体的感觉信号在一定的条件下还可被神经元整合并发送到大脑皮层作进一步处理(图1a)。与单模态感知相比,多模态融合感知在评估物体属性和提高物体识别精度方面具有明显优势。在传统的人工感知系统中,多

离子型二维材料用于神经形态计算获新进展

  大数据时代,具有强大的计算能力和低功耗的硬件成为人们所需,基于离子迁移的神经形态忆阻器近年来引起了广泛关注。目前,基于块状材料的忆阻器可以通过金属离子或空位的调制实现多态操作,但仍面临集成度低、柔性差等挑战。  具有原子级厚度的二维(2D)材料有望用于制造具有高集成密度和良好柔性的忆阻器。此外,

一款可穿戴神经形态芯片制成!可模仿人脑处理信息

美国芝加哥大学普利兹克分子工程学院研究人员开发了一种灵活、可拉伸的计算芯片,该芯片通过模仿人脑来处理信息。发表在《物质》杂志上的该项成果有望改变健康数据的处理方式。研究人员表示,这项工作将可穿戴技术与人工智能和机器学习相结合,创造出一种功能强大的设备,可直接分析人体的健康数据。目前,人们要深入了解自

德科学家开发出模拟人脑的神经形态系统硅圆片

  欧盟为人脑研究项目(Human Brain Project)准备投入12亿欧元。相应地人们对这个项目的期待也很高。6月20号结束的莱比锡世界超级计算机大会上,人脑研究项目协调人之一,德国海德堡大学教授卡尔海因茨?麦耶(Karlheinz Meier)介绍了德国科学家取得的研究进

多校联合在铁电基神经形态视觉系统领域取得进展

元件能否可以像人类视网膜那样,在每个像素上把感知、存储、计算功能集于一体?科学家提出了开发感知、存储、计算“全在一”视网膜硬件的构想。近日,山西师范大学教授许小红、副教授薛武红与复旦大学教授周鹏、南方科技大学副教授周菲迟合作,提出并构建全范德华二硫化硒/六方氮化硼/铜铟二磷六硫基铁电场效应晶体管,通