科研人员制备出具有优良导电性能的多层堆叠二维聚苯胺晶体
导电聚合物是具有导电能力的有机聚合物,包括聚苯胺、聚噻吩和聚吡咯等,被认为是可能取代传统半导体和金属的有机材料。导电聚合物生成成本低、密度小、成膜性能好、机械柔韧性更高,具备更广泛的化学功能性,有望成为制备下一代有机电子器件的核心材料。电荷在导电聚合物薄膜中的传输效率,对其应用性能具有决定性作用。电荷在不同聚合物链之间的跳跃作用是整体材料传导的关键。为实现长距离电荷传输,将线性导电聚合物链排列成高度有序的二维晶体材料是有前途的策略。二维结构中所有聚合物链将处于平面拓扑交联构象,能够为链间电荷传输提供多种途径,并规避单个聚合物链结构缺陷造成的电荷陷阱。因此,构筑具有二维晶体结构的导电聚合物是优化其电学性质的关键。中国科学院宁波材料技术与工程研究所、德累斯顿工业大学、德国马普高分子研究所、西班牙巴斯克纳米科学合作研究中心等的科研人员,制备出多层堆叠的二维聚苯胺(2DPANI)晶体。这一晶体展现出高导电性与面外金属性电荷传输特性,为导......阅读全文
多层堆叠二维聚苯胺晶体-实现优异导电性
2月6日,《自然》以《具有金属性面外导电性的二维聚苯胺晶体》为题,发表了中国科学院宁波材料技术与工程研究所、德累斯顿工业大学、德国马普高分子研究所、西班牙CIC nanoGUNE-BRTA研究中心等研究团队的联合研究成果。他们首次成功制备出一种多层堆叠的二维聚苯胺(2DPANI)晶体,该晶体展现出高
《先进材料》:导电聚苯胺空心微球研究
近日,中科院化学所有机固体重点实验室的科研人员在可控制备多功能化的导电聚苯胺空心微球方面取得新进展,相关研究结果发表在最新出版的《先进材料》(Adv. Mater. 2007, 19, 2092-2096)杂志上,并被选为封面文章刊登。 微/纳米结构的导电聚苯胺在分子导线、传感器、人工肌肉、微波吸收
科研人员制备出具有优良导电性能的多层堆叠二维聚苯胺晶体
导电聚合物是具有导电能力的有机聚合物,包括聚苯胺、聚噻吩和聚吡咯等,被认为是可能取代传统半导体和金属的有机材料。导电聚合物生成成本低、密度小、成膜性能好、机械柔韧性更高,具备更广泛的化学功能性,有望成为制备下一代有机电子器件的核心材料。电荷在导电聚合物薄膜中的传输效率,对其应用性能具有决定性作用。电
中外科研团队首次制备出多层堆叠二维聚苯胺晶体
记者2月6日从中国科学院宁波材料技术与工程研究所获悉,该所张涛团队联合德国德累斯顿工业大学等科研团队,首次制备出一种多层堆叠的二维聚苯胺(2DPANI)晶体,为导电聚合物材料研究开辟新途径。相关研究成果发表在国际期刊《自然》上。导电聚合物是具有导电能力的有机聚合物,由于其生成成本低、密度小、成膜性能
物理所等基于碳纳米管薄膜的柔性储能器件研究取得进展
单壁碳纳米管作为典型的一维纳米材料,由于其独特的结构而具有许多优异的物理及化学性质,在力学,电学,光学及电化学等方面有着潜在的应用。如何实现碳纳米管的潜在应用,以及提高碳纳米管在实际应用中的性能是目前研究者们关注的焦点。 中科院物理研究所/北京凝聚态物理国家实验室(筹)先进材料与结构分析实
功能化聚苯胺的特性介绍
导电聚合物的研究得到了长足的发展。聚吡咯、聚噻吩、聚苯胺目前已成为最受关注的三大导电高分子品种。尤其是聚苯胺,其合成原料易得、合成方法简单,成本远比聚噻吩和聚吡咯低,同时具有良好的环境稳定性、导电性、电致变色性、质子交换性等性能,成为研究最多的、最有应用前景的导电聚合物之一。目前,人们通过在聚苯胺链
这种导电聚合物可让光线扭曲
日本筑波大学纯粹与应用科学学院的一名科学家开发了一种生产具有螺旋结构的导电聚合物的方法。通过使用液晶作为模板,能够生产出能将光转换成圆偏振的光学活性聚合物。这种方法可能有助于降低智能显示器的成本。相关研究近日发表于《分子晶体与液晶》。 今天,走进电子产品商店,如果你碰巧走进电视机专柜,可能会有
上海光源SAXS线站用户二维介观有序导电高分子获进展
发展新型的、石墨烯之外的二维超薄结构材料已成为时下的研究热点。通过机械剥离、气相沉积以及界面导向的生长技术,人们已经可以成功实现一系列二维材料的制备。而有序介观结构的引入,特别是在二维材料片层内部引入范围在2-50nm内的有序介孔阵列,可以提供给二维材料更大的比表面和更为贯通的网络结构。同时,纳
-可折叠的新型导电聚合物问世
美国德雷塞尔大学与大连理工大学合作制备出一种新型导电聚合物纳米复合材料,其柔性能达到折叠程度,而强度足以支撑几倍于自身重量的物体。该材料有望用于改进电能储存、便携式电子设备及同轴电缆等的射频屏蔽等。 上述成果是研究人员基于一类名为MXene的二维材料,通过插层方法,在MXene的各个层之间插
二维导电MOF具有优秀的导电性和结构稳定性
近年来,利用可再生能源产生的电能,将CO2电还原为各种高附加值化学品,是一条很有前景的实现碳平衡的路径,因而得到研究者的广泛关注。目前大多数非贵金属催化剂是将前驱体经过高温裂解后,将得到的碳基材料应用于电催化中,但其存在活性成分复杂、分布不均匀的问题。金属-有机框架(MOFs)材料作为一类新型的
高分子锂离子电池的基本介绍
一般的电池的三要素:正极、负极与电解质。所谓的锂聚合物电池是指在三要素中至少有一个或一个以上采用高分子材料的电池系统。在锂聚合物电池系统中,高分子材料大多数被用在了正极和电解质上。正极材料使用的是导电高分子聚合物或一般锂离子电池所使用的无机化合物,负极常应用锂金属或锂碳层间化合物,电解质是采用固
聚合物锂电池的三要素有哪些?
电池的三要素:正极、负极与电解质。所谓的聚合物锂电池是指在三要素中至少有一个或一个以上采用高分子材料的电池系统。在锂聚合物电池系统中,高分子材料大多数被用在了正极和电解质上。正极材料使用的是导电高分子聚合物或一般锂离子电池所使用的无机化合物,负极常应用锂金属或锂碳层间化合物,电解质是采用固态或者
什么是聚合物锂离子电池?
锂聚合物电池(Li-polymer)又称之为高分子锂离子电池,是一种化学性质的电池。锂聚合物电池具有超薄化特征,可以配合一些产品的需要,制作成不同形状与容量的电池,理论上的最小厚度可达0.5mm。锂聚合物电池是采用锉合金做正极,采用高分子导电材料、聚乙炔、聚苯胺或聚对苯酚等做负极,有机溶剂作为电解质
二维有序介孔材料应用于微型超级电容器研究获进展
二维材料,如石墨烯,是一类具有重要应用前景的平面微型超级电容器电极材料。发展二维材料基复合介孔纳米片,不仅可有效抑制片层的堆叠,增加比表面积,而且可大大缓冲电极的体积膨胀,提高电解液离子的扩散和电化学性能。但是,目前报道的都是关于面内垂直柱状的介孔纳米片,而面内平行柱状的有序介孔纳米片的可控制备
石墨烯的特性和应用特点
石墨烯,是由一层碳原子构成的石墨薄片,是目前已知的导电性能最出色的材料,这使其在微电子领域极具应用潜力。石墨烯的理论研究已有60多年的历史,除了在电子器件的应用外,石墨烯在电池电极材料、储氢材料、纳米复合材料、生物传感等领域的应用已广泛。聚苯胺具有化学性质专一、表面积大、电传导性能好、制备简单、稳定
扫描电镜显示不出石墨烯是什么原因
1,扫描电镜看的是样品的局部区域,可能你看到的样品区域刚好就没有石墨烯。2,你的样品为符合才能,可能在复合材料制备过程中,石墨烯的结构已经被破坏,所以看不到。3,复合材料中的石墨烯含量本身就极少,需要在SEM下找很多区域,也许能看到。.基于石墨烯的纳米复合材料在能量储存、液晶器件、电子器件、生物材料
关于聚合物锂电池的特点介绍
锂聚合物电池是采用锉合金做正极,采用高分子导电材料、聚乙炔、聚苯胺或聚对苯酚等做负极,有机溶剂作为电解质。锂聚苯胺电池的比能量可达到350W.h/kg,但比功率只有50-60W/kg,使用温度-40-70度,寿命约330次左右。 相对于锂离子电池,锂聚合物电池的特点如下: 1、相对改善电池漏
锂聚合物电池有哪些特征?
锂聚合物电池是采用锉合金做正极,采用高分子导电材料、聚乙炔、聚苯胺或聚对苯酚等做负极,有机溶剂作为电解质。锂聚苯胺电池的比能量可达到350W.h/kg,但比功率只有50-60W/kg,使用温度-40-70度,寿命约330次左右。 相对于锂离子电池,锂聚合物电池的特点如下: 1、相对改善电池漏
高分子锂离子电池的特点介绍
锂聚合物电池是采用锉合金做正极,采用高分子导电材料、聚乙炔、聚苯胺或聚对苯酚等做负极,有机溶剂作为电解质。锂聚苯胺电池的比能量可达到350W.h/kg,但比功率只有50-60W/kg,使用温度-40-70度,寿命约330次左右。 相对于锂离子电池,锂聚合物电池的特点如下: 1、相对改善电池漏
锂聚合物电池的特点有哪些?
锂聚合物电池是采用锉合金做正极,采用高分子导电材料、聚乙炔、聚苯胺或聚对苯酚等做负极,有机溶剂作为电解质。锂聚苯胺电池的比能量可达到350W.h/kg,但比功率只有50-60W/kg,使用温度-40-70度,寿命约330次左右。 相对于锂离子电池,锂聚合物电池的特点如下: 1、相对改善电池漏
聚合物锂离子电池的特点介绍
锂聚合物电池是采用锉合金做正极,采用高分子导电材料、聚乙炔、聚苯胺或聚对苯酚等做负极,有机溶剂作为电解质。锂聚苯胺电池的比能量可达到350W.h/kg,但比功率只有50-60W/kg,使用温度-40-70度,寿命约330次左右。 相对于锂离子电池,锂聚合物电池的特点如下: 1、相对改善电池漏
聚合物锂电池的概念和特性
聚合物锂电池一般指锂聚合物电池。锂聚合物电池,又称高分子锂电池,是一种化学性质的电池。相对以前的电池来说,具有能量高、小型化、轻量化的特点。锂聚合物电池是采用锉合金做正极,采用高分子导电材料、聚乙炔、聚苯胺或聚对苯酚等做负极,有机溶剂作为电解质。锂聚苯胺电池的比能量可达到350W.h/kg,但比功率
锂聚合物电池的特点
聚合物锂电池一般指锂聚合物电池。锂聚合物电池,又称高分子锂电池,是一种化学性质的电池。相对以前的电池来说,具有能量高、小型化、轻量化的特点。锂聚合物电池是采用锉合金做正极,采用高分子导电材料、聚乙炔、聚苯胺或聚对苯酚等做负极,有机溶剂作为电解质。锂聚苯胺电池的比能量可达到350W.h/kg,但比功率
聚合物锂离子电池的概念和聚合物锂离子电池的技术特点
锂聚合物电池(Li-polymer)又称之为高分子锂离子电池,是一种化学性质的电池。锂聚合物电池具有超薄化特征,可以配合一些产品的需要,制作成不同形状与容量的电池,理论上的最小厚度可达0.5mm。锂聚合物电池是采用锉合金做正极,采用高分子导电材料、聚乙炔、聚苯胺或聚对苯酚等做负极,有机溶剂作为电解质
深圳先进院一维导电聚合物研究取得新成果
聚吡咯作为目前研究最广泛的一种导电高分子材料,在各种器件上(如电池、电容器、生物传感器和DNA芯片等)具有广阔应用前景。近年来,科研工作者开拓了一系列新型合成方法,以制备具有不同纳、微米结构的聚吡咯。然而,由于吡咯自身具有α、β双聚合位点的结构特征,在合成时极易形成交联的高维聚合物
离子液体掺杂聚苯胺固相微萃取涂层的电沉积制备
离子液体掺杂聚苯胺固相微萃取涂层的电沉积制备及其在芳香胺检测中的应用摘要新型萃取材料及相关涂层制备技术是固相微萃取技术发展的重点。本研究在1-羟丙基-3-甲基咪唑-四氟硼酸盐( [C3( OH) mim][BF4]) 和HNO3混合溶液中,通过电化学方法在铂( Pt) 丝表面固定新型聚苯胺-离子液体
锂电池导电高聚物正极材料介绍
锂离子电池中,除了可以用金属氧化物作为其正极材料外,导电聚合物也可以用作锂离子电池正极材料。 目前研究的锂离子电池聚合物正极材料有:聚乙炔、聚苯、聚吡咯、聚噻吩等,它们通过阴离子的搀杂、脱搀杂而实现电化学过程。但这些导电聚合物的体积容量密度一般较低,另外反应体系中要求电解液体积大,因此难以获得
锂离子聚合物电池的基本原理介绍
市面上有两种已经商业化的科技都统称为锂离子聚合物(其中“聚合物”代表“电解质隔离聚合物”)。 电池由以下部分组成: 正极:LiCoO2二氧化锂钴 或 LiMn2O4四氧化锂二锰 隔膜:导电电解质聚合物 (例如:聚乙二醇,PEO) 负极: 锂或锂炭嵌入 (化学)化合物 典型反应:(放电)
《Nature》子刊:导电聚合物氧化还原调控纳米天线光学行为
纳米光学是在纳米尺度上光与物质相互作用的科学与工程,这种相互作用是通过自然或人工纳米材料的物理、化学或结构性质来调控的。其最终目标之一即是在纳米尺度上动态调整光的形状。虽然利用传统的基于金属纳米结构的等离子体可以实现光与物质的共振相互作用,但是由于其具有固定的介电常数而极大的限制了其可调性。因此
简述锂离子电池电解质固体聚合物的导电机理
固体聚合物电解质由高分子主体物和金属盐两部分复合而成。前者含有能起配位作用的给电子基团,且基团数的多寡、是否稳定、分子链的柔性等均对固体聚合物电介质有重要影响。Armand等认为离子导电是通过离子在螺旋溶剂化结构的隧道中的跃迁而实现的。Berthier的研究结果表明,由PEO和碱金属盐形成的固体