研究实现人工光合作用高效稳定制氢
近日,中国科学技术大学教授孙海定、熊宇杰团队联合武汉大学刘胜院士团队,通过创新设计一种晶圆级可制造的新型硅基氮化镓纳米线光电极结构,实现了高达10.36%的半电池太阳能制氢效率,并在高电流密度下稳定产氢超过800小时,首次将光电极使用寿命从小于100小时的“小时级”推进至“月级”,成功突破传统光电制氢装置在效率和可靠性上的瓶颈,达到国际领先水平,为下一步规模化制氢应用打下基础。该成果日前发表于《自然-通讯》。光电化学水分解是一种通过阳光和水直接转化为绿色氢气的技术,因其环保且可持续的特点,已成为清洁能源领域的重要研究方向。在光电化学水分解中,光电极的催化活性和长期稳定性是实现高效、可靠氢气生产的关键。然而,许多传统光电极材料如硅、金属氧化物等易发生光腐蚀与化学腐蚀,并且催化剂与半导体界面结合弱,导致助催化剂脱落与催化活性衰减,从而限制了光电极的长期耐久性。针对这一挑战,团队设计并制备了一种可大规模生产的新型一维/三维异质异构的光......阅读全文
制样筛(60目)在土壤制样中的优势
在我国对于土壤的标准物质的研制起步是比较晚的,到了80年代中期才开始有2批 土壤标准物质研制出来,我们从1991年起历时数年研制出适用于全国主要土壤类型、定值项目较多使用较广的6个土壤有效态成分标准物质,并已经国家技术监督局审定批准为国家一级标准物质。土壤的制样粒度对研制的结果很有影响,制样筛(60
电镜制样高端生物电镜制样技术全解析
电镜制样-徕卡高端生物电镜制样技术全解析
我所发现MOF类光催化剂的电荷分离和制氢活性具有晶面依赖性
原文地址:http://www.dicp.cas.cn/xwdt/kyjz/202307/t20230720_6813266.html 近日,我所太阳能研究部太阳能制储氢材料与催化研究组(DNL1621)章福祥研究员等人在MOF材料晶面诱导光催化电荷分离与分解水制氢活性研究中取得新进展,通过控制合
新型“人造树叶”能源转化率创新纪录
欧盟“A-LEAF”项目团队在最新一期《能源与环境科学》杂志上撰文指出,他们研制出了一款“人造树叶”系统,能模仿自然界的光合作用,将二氧化碳和水转化为可持续燃料,创下10%的太阳能—燃料转化效率新纪录。这是首款太阳能—燃料转化率比天然树叶高一个数量级的“人造树叶”,为实现能源转型提供了可持续解决方案
热电阻四线制、三线制、两线制的区别对比分析
传感器的结构: 两线制: 传感器电阻变化值与连接导线电阻值共同构成传感器的输出值,由于导线电阻带来的附加误差使实际测量值偏高,用于测量精度要求不高的场合,并且导线的长度不宜过长。 三线制: 要求引出的三根导线截面积和长度均相同,测量铂电阻的电路一般是不平衡电桥,铂电阻作为电桥的一个桥臂电
解析氢能与储氢技术的发展前景
近日,中国能源研究会储能专委会和中关村储能产业技术联盟联合发布的《2018储能产业研究白皮书》显示,截至2017年底,全球已投运储能项目累计装机规模175.4GW,年增长率3.9%。我国储能项目累计装机28.9吉瓦,同比增长19%,增速是全球的5倍左右,其中电化学储能累计装机规模为389.8MW
简述二氢黄酮和二氢黄酮醇
与黄酮和黄酮醇相比,其结构中C环C2-C3位双键被饱和,他们在植物体内常与相应的黄酮和黄酮醇共存。如甘草中的甘草素、橙皮中的橙皮苷均属于二氢黄酮类;满山红中的二氢槲皮素、桑枝中的二氢桑色素均属于二氢黄酮醇类。
人工光合作用技术研发成功
韩国科学技术院的新材料工学院研究组日前利用纳米材料成功研发了人工光合作用技术。 据介绍,人工光合作用技术是一种利用光能生成精密化学物质的技术。该研究组仿效自然界的光合作用,以用于太阳能电池的纳米级光感材料,将光能转换成电能,由此引导产生氧化还原酶反应。 研
光合作用测定仪的应用
光合作用在植物生长发育过程中是非常重要的,植物在光照作用下,通过叶绿体的机能,把二氧化碳和水转化成储存着能量的有机物,同时释放一定量的氧气,我们日常生活中的食物便主要是光合作用形成的有机物,可以这么说光合作用直接决定了作物的产量和品质,我们可以通过恒美光合作用测定仪来观测植物的光合作用。 对于人类
光合作用和植物生长的关系
植物光合作用测定仪是研究光合速率的重要仪器。它是使用电脑计算和使用二氧化碳的分析仪器和叶室之中的通信功能,从而接受各个所接收到的信息,采集到的数据,用来共同储存或者共同进行计算。计算使用二氧化碳吸收法进行计算,二氧化碳吸收法因为它的灵敏度高,原理得到了大家的认可,并且可以保证对叶片不进行破坏,
光合作用测定仪的功能
1、主要用于从事植物叶片光合作用、蒸腾作用、呼吸作用等相关研究;2、测量参数 包括CO2浓度、H2O浓度、空气温度、叶片温度、相对湿度、蒸气压亏缺、露点温度、大气压、内置光强、外置光强、净光合速率、蒸腾速率、胞间CO2浓度、气孔导度等。
植物光合作用测定仪概述
光合作用测定仪可以测定气体CO2浓度、空气温湿度,植物叶片温度,光强,气体流量等要素,并计算出植物的光合(呼吸)速率、蒸腾速率、细胞间CO2浓度和气孔导度四大光合作用指标,在生物、农学、园艺、林业、昆虫、微生物、动物等许多专业的实验课程中有广泛的利用前景. HED-GH20光合作用测定仪测量项
光合作用测定仪的应用
光合作用在植物生长中是非常重要的一个环节,光合作用通常是指绿色植物吸收光能,把二氧化碳和水合成富能有机物,同时释放氧气的过程。植物每年可吸收合成约的有机物。人类所需的粮食、油料、纤维、木材、糖、水果等,无不来自光合作用,没有光合作用,人类就没有食物和各种生活用品。换句话说,没有光合作用就没有人类
光合作用“绿巨人”蓄势待发
光合作用是地球生物安全高效地获取太阳能量的主要途径。在植物中,运行光合作用的场所——光合膜有着复杂而精细的结构。 北京时间12月9日,《自然》以长文形式在线发表了中科院植物研究所(以下简称植物所)匡廷云院士团队与浙江大学张兴团队联合完成的突破性研究成果。 55个蛋白亚基的叶绿体超分子复合体的
光合作用“绿巨人”蓄势待发
光合作用是地球生物安全高效地获取太阳能量的主要途径。在植物中,运行光合作用的场所——光合膜有着复杂而精细的结构。 北京时间12月9日,《自然》以长文形式在线发表了中科院植物研究所(以下简称植物所)匡廷云院士团队与浙江大学张兴团队联合完成的突破性研究成果。 他们首次解析了大麦中一个包含55个
光合作用测定仪的概述
光合作用测定仪可以测定气体CO2浓度、空气温湿度,叶片温度,光合有效辐射,细胞间CO2浓度,气体流量等要素,并计算出植物的光合速率、蒸腾速率、气孔导度、胞间二氧化碳浓度和水分利用率等光合作用指标,也可以单独作为二氧化碳记录仪使用。FS-3080H植物光合测量系统采用windows 操作系统,触摸
植物光合作用测试仪概述
光合作用在实际进行过程中还会带动着自然界中的其他物质实现循环,为自然界的稳定与平衡提供助力。但是,影响光合作用的因素有多种,且一旦其中的某一关键因素发生改变,则将可能对光合作用造成较大的影响。 FT-GH30植物光合测量系统可以测定气体CO2浓度、空气温湿度,叶片温度,光合有效辐射,细胞间CO
光合作用测定仪产品特点
多功能:同时测定光合速率、蒸腾速率、胞间二氧化碳浓度、气孔导度和水分利用效率,以及二氧化碳浓度、相对湿度、光合有效辐射和空气温度、叶片温度十项指标 稳定性:加入了温度调节的双波长红外二氧化碳分析器,二氧化碳测量精度不受温度变化影响,而且具有稳定、精度高,反映灵敏等特点,1秒钟之内就可以完成二氧化碳
光合作用测定仪的作用
光合作用测定仪是近年来被研发用于分析植物光合作用速率的,仪器通过检测可以及时的获得我们需要的光合作用指标,该仪器具有灵敏度高、反应迅速,抗干扰性强,操作方便,可以进行活体的、连续的测定等突出优点,同时光合作用测定仪配有不同类型的叶室(呼吸反应器)能广泛用于大田作物、果树、蔬菜、森木、牧草等多种植
植物光合作用测量系统的应用
随着植物光合作用研究的深入和现代光合测定 系统的推广 ,越来越多的植物学科如农学、林学 、植物生理学 、植物生态学 、园艺学和遗传学 的研究均涉及到叶片光合作用的测定 。而净光合速率是衡量绿色植物光合能力大小的一个重要指标 。 植物光合测量系统可以测定气体CO2浓度、空气温湿度,叶片温度,光合
光合作用的内部影响因素介绍
1. 不同部位在一定范围内,叶绿素含量越多,光合越强。以一片叶子为例,最幼嫩的叶片光合速率低,随着叶子成长,光合速率不断加强,达到高峰,随后叶子衰老,光合速率就下降。2. 不同生育期株作物不同生育期的光合速率不尽相同,一般都以营养生长期为最强,到生长末期就下降。以水稻为例,分蘖盛期的光合速率较快,在
光合作用的外部影响因素介绍
1. 光照(1)光强度对光合作用的影响光合作用是一个光生物化学反应,所以光合速率随着光照强庋的增减而增减。在黑暗时,光合作用停止,而呼吸作用不断释放CO2;随着光照增强,光合速率逐渐增强,逐渐接近呼吸速率,最后光合速率与呼吸速率达到动态平衡相等。同一叶子在同一时间内,光合过程中吸收的CO2与光呼吸和
光合作用中氧气形成细节揭示
据《自然》杂志3日发表的论文,美国和德国两个科研团队首次揭示了光合作用过程中氧气如何形成的微观细节,了解光合作用过程中的水分解对于开发将水转化为氢燃料的设备非常重要。 光合作用是植物、藻类和一些细菌利用阳光创造生长所需能量的过程。此前的研究表明,只需要4个连续的光子撞击植物的分子结构,就可启动
光合作用和第五物质状态
芝加哥大学的科学家们发现了光合作用和激子凝聚体之间的联系,这是一种允许能量在没有摩擦的情况下流动的物理学状态。这一令人惊讶的发现,通常与远低于室温的材料有关,可能为未来的电子设计提供信息,并帮助解开复杂的原子相互作用。 在一个实验室里,科学家们惊叹于当他们将原子冷却到接近绝对零度时形成的一种奇
光合作用测定仪的作用
1、利用笔记本电脑和二氧化碳分析仪及叶室之间进行通信,接收各传感器采集的实时数据,数据采样周期快,计算准确。可测定植物的光合(呼吸)速率、蒸腾速率、气孔导度。 2、软件界面友好,对各种传感器进行实时曲线显示,操作简便 。 3、交直流两用,使用时间长。特殊用户可配备太阳能电池板,便于野
修复光合作用提升作物产量
在进化基本失败的地方,智慧设计成功了。生物学家通过弥补光合作用的一个重要缺陷,使烟草生物量增加了约40%。相关成果日前发表于《科学》杂志。一种高效的产量提升方法或将很快出现。图片来源:stevanovicigor/Getty 目前,该团队正从豇豆和大豆入手,试图将相同的变化引入食用作物。“资助
修复光合作用提升作物产量
在进化基本失败的地方,智慧设计成功了。生物学家通过弥补光合作用的一个重要缺陷,使烟草生物量增加了约40%。相关成果日前发表于《科学》杂志。一种高效的产量提升方法或将很快出现。图片来源:stevanovicigor/Getty 目前,该团队正从豇豆和大豆入手,试图将相同的变化引入食用作物。“资助
科研人员发现新型光合作用
美国《科学》杂志刊登的一项新研究说,蓝藻可利用近红外光进行光合作用,其机制与之前了解的光合作用不同。这一发现有望为寻找外星生命和改良作物带来新思路。 蓝藻并不是藻类,而是一类能进行光合作用的单细胞原核生物,也称为蓝细菌。英国帝国理工学院的研究人员在美国黄石公园和澳大利亚海岸岩石上发现了一些蓝藻
光合作用仪的相关应用原理
光合作用仪测量参数包括CO2浓度、净光合速率、蒸腾速率、胞间CO2浓度、气孔导度、大气湿度、空气温度、叶片温度、蒸汽压亏缺、大气压、光强、、Ci/Ca等,主要应用在植物叶片光合作用,蒸腾作用,呼吸作用等研究。光合作用仪可以通过这些响应曲线计算出RuBP羧化效率、表观量子产量、光补偿点、光饱和点、CO
植物光合作用仪的功能简述
主要功能 主要用于从事植物叶片光合作用、蒸腾作用、呼吸作用等相关研究,测量参数包括CO2浓度、H2O浓度、空气温度、叶片温度、相对湿度、蒸汽压亏缺、露点温度、大气压、内置光强、外置光强、净光合速率、蒸腾速率、胞间CO2浓度、气孔导度、Ci/Ca等。