人工光合作用技术研发成功
韩国科学技术院的新材料工学院研究组日前利用纳米材料成功研发了人工光合作用技术。 据介绍,人工光合作用技术是一种利用光能生成精密化学物质的技术。该研究组仿效自然界的光合作用,以用于太阳能电池的纳米级光感材料,将光能转换成电能,由此引导产生氧化还原酶反应。 研究组负责人朴赞范说,人工光合作用技术的优点是以取之不尽的太阳能为能量来源,且不产生二氧化碳,有利于环保。 他还介绍说,由于氧化还原酶在合成各种精密化学物质方面有着广泛的应用前景,因此凭借该技术有望能利用太阳能生产各种具有高附加值的精密药品,同时为氧化还原酶产业化应用提供平台。 &nb......阅读全文
光合作用速率与光和作用强度的关系
光合速率,定义:光合作用固定二氧化碳的速率。即单位时间单位叶面积的二氧化碳固定(或氧气释放)量。光合作用强弱的一种表示法,又称“光合强度”。光合速率的大小可用单位时间、单位叶面积所吸收的CO2或释放的O2表示,亦可用单位时间、单位叶面积所积累的干物质量表示。 光合作用强度指的是植物在光照下,单位时
光和物质在空腔内发生强耦合作用
据美国每日科学网消息,英美科学家构造出一个高质量空腔来容纳一层超薄砷化镓,并通过一个磁场调谐砷化镓,使其同腔内特定状态的光发生共振,光和物质耦合在一起,形成了偏振子(Polariton),这些偏振子像一个整体那样行动。研究人员表示,这是他们迄今观察到的最强的光—物质耦合现象之一,有望促进量子计算
物理所在强激光和物质相互作用研究中取得进展
自旋极化的正电子在高能物理、材料物理和实验室天体物理等领域具有广泛的用途。目前,传统极化正电子源是基于Bethe-Heitler机制通过圆偏振伽马光或纵向极化电子轰击高Z固体靶实现的,但是单发的正电子产额只有飞库量级(10-15库仑),难以满足未来正负电子对撞机所需的纳库(10-9库仑)以及极化
荧光和磷光的产生
荧光和磷光的产生涉及光子的吸收和再发射两个过程。 1.激发过程 分子吸收辐射使电子能级从基态跃迁到激发态能级,同时伴随着振动能级和转动能级的跃迁。在分子能级跃迁的过程中,电子的自旋状态也可能发生改变。应用于分析化学中的荧光和磷光物质几乎都含有π→π*跃迁的吸收过程,它们部含有偶数电子。根据泡里不相容
分子荧光和分子磷光
分子和原子一样,也有它的特征分子能级,分子内部的运动可分为价电子运动、分子内原子在平衡位置附近的振动和分子绕其重心的转动。因此分子具有电子能级、振动能级和转动能级。 分子从外界吸收能量后,就能引起分子能级的跃迁,即从基态跃迁到激发态,分子吸收能量同样具有量子化的特征,即分子只能吸收等于二个能级
新型激光和黄金纳米棒焊接技术可缝接人体伤口
据国外媒体报道,科学家现成功测试了一种含有黄金纳米棒的焊接材料,它可以被用来激光焊接患者的手术伤口,从而替代传统的针线缝合技术。 这种焊料包含着黄金纳米棒颗粒,可形成在身体中移动的弹性封条。美国化学研究所的科学家现已在猪肠道上测试了这种缝合材料,认为它可以替代传统的针线缝合技术。他们发现这
免疫荧光和细胞分离
实验步骤基 本 方 案 1 单细胞表面抗原的免疫荧光标记材 料基 本 方 案 2 固定和渗透单细胞的细胞内抗原的免疫荧光标记材 料辅 助 方 案 1 用 异 硫 氰 酸 荧 光 黄(FITC) 偶联抗体材 料6 . 计算荧光素/蛋 白 质 比(F/P ):F/P = F I T C 摩尔数/蛋白质摩
物理所金属纳米结构中光和物质相互作用研究获系列进展
金属纳米颗粒和纳米结构中的表面等离激元(surface plasmon polaritons, SPPs)具有众多独特的物理性质,在集成光子学、生物传感、精密测量、信息处理和清洁能源等领域有广泛的应用前景。金属微纳结构中光和原子、分子、量子点等物质的量子相互作用的研究一直是微纳光学领域的一个
追寻光和梦,解答钱之问
抨击应试教育 中村修二对美国体制极力推崇,而对日本体制极力抨击。在他获得诺贝尔奖后,也不忘抨击日本体制。 在《梦》中 [7],他指出,在教育体制上,美国重视培养人的个性,而日本培养的学生没有个性,而且 “他们从小到大所受的教育,就只是为了训练他们考上第一志愿而已。” 中村呼吁: “尽快
紫外分光和红外分光的区别
可能有五个原因:灵敏度选择太低。汽化室进样口密封垫漏气。汽化室与色谱柱或柱后至检测器之间漏气。注射针使用过久本身漏气,或汽化室温度太低。输入电缆线断路或短路,或极化电压没加上。气相色谱仪,指将分析样品在进样口中气化后通过对欲检测混合物中组分有不同保留性能的色谱柱,得到各组分的检测信号的仪器。气相色谱
荧光和化学发光标记
连接于二抗的标记物是为了检测抗体的结合,选择标记物依赖于几个参数:检测方法:荧光或着色沉淀,荧光标记物用特殊波长的光激发时发射出可见光封片介质(仅免疫组化):AEC, Fast Red, INT 或其它水性发光基团是可以醇溶的并要求水性封片. 除上述之外的发光基团是有机的所以最好使用有机性封片介质。
激光和荧光有什么关系
荧光物质是该激光器的工作物质,由于受激发射而产生激光。荧光物质发射荧光是单重态到基态的辐射跃迁,三重态到基态的辐射跃迁所发出的光称之为磷光。激光效率和工作物质的性质有关,但不一定和其三重态有直接的联系。
有哪些仪器可以测量光和色彩
生活中有丰富多彩的颜色,很多时候在汽车内饰,家居应用,移动电话,纺织制造等各行业中,为了更好地区别产品类别,需要运用各种不同的色彩或光的测量仪器。有科电的色彩照度计,显示器色彩分析仪,显色照度计,成像色度计,色彩亮度计;手持式的分光辐射照度计,分光辐射亮度计等。这些仪器都是能够很好得进行色彩判定与光
广州华粤行化学发光和多色荧光成像技术巡回讲座预告
UVItec Alliance系列化学发光和多色荧光成像系统全国巡回讲座 【上海站】--------【南昌站】-------【武汉站】-----【更多精彩活动·敬请关注】 2011-4-12 2011-4-20 2011-5月 近年来,化学发光和多色荧光成像技术发展迅猛,为
活体动物体内生物发光和荧光成像技术基础原理与应用四
二、活体动物荧光成像技术 (一)技术原理1.标记原理活体荧光成像技术主要有三种标记方法。(1)荧光蛋白标记:荧光蛋白适用于标记细胞、病毒、基因等,通常使用的是GFP、EGFP、RFP(DsRed)等;(2)荧光染料标记:荧光染料标记和体外标记方法相同,常用的有Cy3、Cy5、Cy5.5及Cy7,可以
活体动物体内生物发光和荧光成像技术基础原理与应用一
活体动物体内生物发光和荧光成像技术基础原理与应用简介 文章目录:一、活体生物发光成像技术二、活体动物荧光成像技术三、生物发光成像与荧光成像的比较四、活体动物可见光成像仪器原理与操作流程活体动物体内成像技术是指应用影像学方法,对活体状态下的生物过程进行组织、细胞和分子水平的定性和定量研究的技术。活体动
活体动物体内生物发光和荧光成像技术基础原理与应用三
4.干细胞及免疫学用荧光素酶标记干细胞有以下几种方法:一种是标记组成性表达的基因,做成转基因动物,干细胞就被标记了,若干细胞移植到另外动物体内,可以用活体生物发光成像技术示踪干细胞在体内的增殖、分化及迁徙的过程;另外一种方法是用慢病毒直接标记干细胞后,移植到体内观测其增殖、分化及迁徙过程,研究其修复
活体动物体内生物发光和荧光成像技术基础原理与应用五
3. 药学研究荧光成像在药物制剂学研究,尤其是药物靶向性研究,药物载体研究中有巨大优势。有关专家正在设计用合适的荧光染料标记小分子药物,观察药物在动物体内的特异性分布和代谢情况,尤其是中药研究方面。 应用透射仪从样本底部激发光源,可以提高活体荧光成像的灵敏度和检测的深度。图11-6是应用NIR荧光染
活体动物体内生物发光和荧光成像技术基础原理与应用六
(二)荧光成像技术优点在活体动物可见光成像技术中,相对于生物发光成像技术,荧光成像技术的优势主要表现在:1. 荧光染料、蛋白标记能力强荧光标记物种类繁多,包括荧光蛋白、荧光分子、量子点等,可以与基因、多肽、抗体等生物分子标记,作为分子探针使用范围广。同时,不同的荧光蛋白或染料还可对样本进行多重标记
活体动物体内生物发光和荧光成像技术基础原理与应用七
(二) 实验操作流程1. 细胞标记或动物标记等进行生物发光实验,首先根据实验内容的不同,用荧光素酶基因标记肿瘤细胞、干细胞、病毒、药物载体或动物,或者用Lux操纵子标记细菌。用荧光素酶基因标记可通过质粒、慢病毒或逆转录病毒等方法进行。如果进行荧光实验,就用GFP、EGFP或RFP标记肿瘤细胞、干细
活体动物体内生物发光和荧光成像技术基础原理与应用二
(二)活体生物发光成像技术应用领域活体生物发光成像技术是一项在某些领域有不可替代优势的技术,比如肿瘤转移研究、药物开发、基因治疗、干细胞示踪等方面。1.肿瘤学活体生物发光成像技术能够让研究人员能够直接快速的测量各种癌症模型中肿瘤的生长、转移以及对药物的反应。其特点是极高的灵敏度使微小的肿瘤病灶(少到
偏振光和自然光的简介
偏振光是指光矢量的振动方向不变,或具有某种规则地变化的光波。按照其性质,偏振光又可分为平面偏振光、圆偏振光和椭圆偏振光、部分偏振光几种。如果光波电矢量的振动方向只局限在一确定的平面内,则这种偏振光称为平面偏振光。如果光波电矢量随时间作有规则地改变,即电矢量末端轨迹在垂直轨迹在传播过程中为一直线,
原子荧光和原子吸收的区别
原子吸收分光光度法是基于基态原子对共振光的吸收:而原子荧光光度是处于激发态原子向基态跃迁,并以光辐射形式失去能量而回到基态。而且这个激发态是基态原子对共振光吸收而跃迁得来的。因此,原子荧光包含了两个过程:吸收和发射。色散系统:较之原子吸收荧光谱线更少,光谱干扰也少,所以可以用低分辨力的分光系统甚至于
分子荧光和原子荧光的区别
分子荧光和原子荧光都是光致发光,二者都是价电子跃迁,但因为前者会伴随有振动能级和转动能级的跃迁,所以是连续发射,而后者是分立的线发射;前者分析物一般是处于溶液状态,后者需要转化成气态原子;前者测定的主要是含有共轭不饱和体系的化合物,而后者测定的主要是金属元素的含量;前者采用的主要是氙灯或高压汞灯,而
荧光,磷光和化学发光进行比较
一般概念,荧光是指标记用来检测的物质或者直接"染色"被检测物,通过荧光显微镜观测结果。磷光甚少用在IVD,了解不多。化学发光分为两类,辉光和闪光,闪光大多数是直接标记发光物质到检测物上,通过一定条件发光。辉光大多数是酶催化底物发光。检测仪器闪光比辉光要求高很多。
原子荧光和原子吸收的区别
原子荧光和原子吸收都是光谱,原理稍微有些不同。原子荧光的特长是测量As,Se,Hg等一些过度元素和特殊的金属元素。原子吸收分火焰和石墨炉两种,主要测量重金属元素,石墨炉原子吸收测量重金属元素也可以达到ug/L级别。原子荧光和原子吸收在实验室里没有ICPMS的情况下作为互补,可以测量大部分金属元素和过
光致发光和荧光量子效率计算
原理所谓光致发光(Photoluminescence简称PL),是指物体依赖外界光源 进行照射,从而获得能量,产生激发导致发光的现象。也指物质吸收光子(或电磁波)后重新辐射出光子(或电磁波)的过程。光致发光过程包括荧光发光和磷光发光。从量子力学理论上,这一过程可以描述为物质吸收光子跃迁到
包埋技术的作用
包埋技术就是利用包裹的方式将一些东西物质送到准确的位置,中间过程会逐渐脱落外层所包裹的东西,并到直接脱落完结束,到达目的地,并发挥它特有的功效,包埋剂用于浸制显微标本,增强标本支持强度,便于切片的物质。
五洲东方成功举办多色荧光和化学发光成像技术巡回讲座
2010年5月7日至13日,五洲东方公司联合法国VILBER LOURMAT公司分别在北京翠宫饭店、南京农业大学生命科学学院和广州国门酒店,举办了多色荧光和化学发光成像技术巡回讲座暨新一代全自动多色荧光和化学发光成像系统FUSION FX7体验会。 讲座内容主要围绕欧洲成像技术的最新
试用激光和药物联合法治疗肿瘤
英国研究人员日前报告说,在头颈等部位出现的肿瘤常常难以实施手术,但最新试验显示,利用激光和药物联合治疗可取得良好效果。 据《泰晤士报》3日报道,英国伦敦大学学院附属医院最近对11名头颈部位癌症患者尝试了这种新疗法。其原理是先通过静脉注射将一种新研发的光敏药物送入患者体内。由于肿瘤