2025匹兹堡分析化学和光谱应用会议:探讨近红外光谱在食品分析中的应用

在匹兹堡分析化学和光谱应用会议期间,《光谱学》杂志与因斯布鲁克大学(University of Innsbruck)的克里斯蒂安・胡克(Christian Huck)进行了交流,探讨近红外光谱和成像光谱在食品及生物分析中的应用,以及该行业未来的发展方向。今年的 2025 年匹兹堡分析化学和光谱应用会议在马萨诸塞州波士顿举行,参会者和分离科学专业人士齐聚波士顿会议展览中心,学习并讨论实验室科学的最新趋势。尽管大多数技术议程围绕色谱学的最新进展展开,但在 3 月 2 日星期日上午 9:30 至中午 12:00 举行了一场关于振动光谱的重要口头报告会议。奥地利因斯布鲁克大学的克里斯蒂安・胡克(Christian Huck)教授在该会议期间发表了题为《近红外和成像光谱在食品与生物分析中的应用:现状与未来方向》的演讲(1,2)。在演讲中,胡克(Huck)强调了分子振动光谱在食品和生物分析中如何迅速发展,能够对化学和物理性质进行快速、非侵入......阅读全文

2025匹兹堡分析化学和光谱应用会议:探讨近红外光谱在食品分析中的应用

在匹兹堡分析化学和光谱应用会议期间,《光谱学》杂志与因斯布鲁克大学(University of Innsbruck)的克里斯蒂安・胡克(Christian Huck)进行了交流,探讨近红外光谱和成像光谱在食品及生物分析中的应用,以及该行业未来的发展方向。今年的 2025 年匹兹堡分析化学和光谱应用会

分析近红外光谱仪中近红外光谱原理

近红外光谱仪主要是依靠近红外光谱原理来进来一系列的测量,而近红外光谱又是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,记录的主要是含氢基团X-H(X=C、N、O)振动的倍频和合频吸收。不同团(如甲基、亚甲基,苯环等)或同一基团在不同化学环境中的近红外吸收波长与强度都有明显差别,NIR

分析近红外光谱仪中近红外光谱原理

  近红外光谱仪主要是依靠近红外光谱原理来进来一系列的测量,而近红外光谱又是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,记录的主要是含氢基团X-H(X=C、N、O)振动的倍频和合频吸收。不同团(如甲基、亚甲基,苯环等)或同一基团在不同化学环境中的近红外吸收波长与强度都有明显差别,NI

近红外光谱仪的近红外光谱分析原理

 近红外光(Near Infrared,NIR)是介于可见光(VIS)和中红外光(MIR)之间的电磁波, ASTM 定义的近红外光谱区的波长范围为 780~2526nm (12820~3959cm1),习惯上又将近红外区划分为近红外短波(780~1100nm)和近红外长波(1100~2526nm)两

近红外光谱仪在食品分析中的应用

摘要:近红外光谱仪在食品工业上的应用非常广泛。利用近红外光谱技术可以进行食品成分的定量分析、水分子中氢结合状态的解析、淀粉的损伤检测、加工适应性的测定和水果内部品质的测定。  公司的微小型、超高性价比的NIR 近红外光谱仪是食品分析中的有效工具,近红外光谱仪可以进行食品的多种成份分析,测定的食品形态

近红外光纤光谱仪用于近红外区域的光谱分析

   近红外光纤光谱仪是一种微型即插即用式光谱仪,用于近红外区域的光谱分析,比如可调激光器的波长特性、湿度分析、普通的近红外光谱分析等。   近红外光纤光谱仪分析技术的优势   样品无须预处理可直接测量:近红外光纤光谱仪测量方式有透射、反射和漫反射多种形式,适合测量液体、固体和浆状等形式的样品,因此

近红外光谱分析原理

  近红外光谱主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,记录的主要是含氢基团X-H(X=C、N、O)振动的倍频和合频吸收。不同团(如甲基、亚甲基,苯环等)或同一基团在不同化学环境中的近红外吸收波长与强度都有明显差别,NIR  光谱具有丰富的结构和组成信息,非常适合用于碳氢有机

近红外光谱仪的近红外光谱分析技术注意事项

 近红外分析技术的一个重要特点就是技术本身的成套性,即必须同时具备三个条件:  (1)各项性能长期稳定的近红外光谱仪,是保证数据具有良好再现性的基本要求;  (2)功能齐全的化学计量学软件,是建立模型和分析的必要工具;  (3)准确并适用范围足够宽的模型。  这三个条件的有机结合起来,才能为用户真正

近红外光谱法测量粮食品质

近红外光谱法测量粮食品质近红外光谱分析技术是20世纪90年代以来最引人注目的光谱分析技术,以其高效、实时、无损等特点广泛应用于工业、农业等领域。近红外光是指波长在760~2500nm范围内的电磁波,当其照射到由一种或多种分子组成的物质上时,如果物质分子为红外活性分子,分子键与近红外光子发生作用,分子

近红外光谱仪的分析原理

  近红外光(Near Infrared,NIR)是介于可见光(VIS)和中红外光(MIR)之间的电磁波,ASTM 定义的近红外光谱区的波长范围为 780-2526nm (12820~3959cm1),习惯上又将近红外区划分为近红外短波(780-1100nm)和近红外长波(1100-2526nm)两

近红外光谱仪的分析方法

 【近红外光谱仪】当代红外光谱技术的发展已使红外光谱的意义远远超越了对样品进行简单的常规测试并从而推断化合物的组成的阶段。近红外光谱仪与其它多种测试手段联用衍生出许多新的分子光谱领域,例如,色谱技术与近红外光谱仪联合为深化认识复杂的混合物体系中各种组份的化学结构创造了机会;把近红外光谱仪与显微镜方法

近红外光谱分析的优势

用于常规湿化学方法的分析速度慢,而且对操作人员的素质要求高,很难满足快速分析的要求。国内许多排队叫号系统企业看到了近红外分析的优势,有些已经购进并实际应用,另外许多则开始关注和考察。相信随着人们对它的认识逐步加深,其应用范围会越来越广泛并成为必不可少的分析手段。近红外仪器分析速度快、精确度高、操作简

近红外光谱仪的分析原理

  近红外光(Near Infrared,NIR)是介于可见光(VIS)和中红外光(MIR)之间的电磁波, ASTM 定义的近红外光谱区的波长范围为 780~2526nm (12820~3959cm1),习惯上又将近红外区划分为近红外短波(780~1100nm)和近红外长波(1100~2526nm)

关于近红外光谱存在的问题分析

  近红外光谱分析技术现阶段已相对成熟,各种不同类型和型号的近红外分析仪在市场上都有销售,但是分析仪器的价格相对较高,尤其是傅立叶变换型(如美国Nicolet 公司)、光栅扫描型(丹麦 Foss 公司)等高精度分析仪,普通商业用户难以承受,无法大面积推广。所以如何降低仪器研制成本并保持足够的分析精度

近红外光谱分析的特点

近红外光谱分析应用方式的特点:近红外光谱的工作谱区信息量丰富,对样品有较强的透过能力。近红外光谱分析能在几秒钟内对被测样品完成一次光谱的采集测量,瞬间即可依靠数学模型完成其多项性能指标的测定。分析过程不产生污染、不消耗其它材料、不破坏样品,分析重现性好、成本低;可以实现快速分析、绿色分析、廉价分析,

近红外光谱仪的分析原理

  近红外光谱仪的分析原理   近红外光(Near Infrared,NIR)是介于可见光(VIS)和中红外光(MIR)之间的电磁波, ASTM 定义的近红外光谱区的波长范围为 780~2526nm (12820~3959cm1),习惯上又将近红外区划分为近红外短波(780~1100nm)和近

近红外与中红外光谱分析的区别

近红外光(NIR)是介于可见区和中红外区间的电磁波,不同文献中对其波长范围的划分不尽相同,美国试验和材料协会(ASTM)规定为700 nm至2500 nm。NIR常被化分为短波近红外(SW-NIR)和长波近红外(LW-NIR),其波段范围分别为700—1100 nm和1100—2500 nm。   

近红外与中红外光谱分析的区别

  近红外光(NIR)是介于可见区和中红外区间的电磁波,不同文献中对其波长范围的划分不尽相同,美国试验和材料协会(ASTM)规定为700 nm至2500 nm。NIR常被化分为短波近红外(SW-NIR)和长波近红外(LW-NIR),其波段范围分别为700—1100 nm和1100—2500 nm。 

近红外与中红外光谱分析的区别

我国对近红外光谱技术的研究及应用起步较晚,除一些专业分析工作人员以外,近红外光谱分析技术还鲜为人知。但1995年以来已受到了多方面的关注,并在仪器的研制、软件开发、基础研究和应用等方面取得了较为可喜的成果。但是目前国内能够提供整套近红外光谱分析技术(近红外光谱分析仪器、化学计量学软件、应用模型)的公

近红外与中红外光谱分析的区别

近红外光(NIR)是介于可见区和中红外区间的电磁波,不同文献中对其波长范围的划分不尽相同,美国试验和材料协会(ASTM)规定为700 nm至2500 nm。NIR常被化分为短波近红外(SW-NIR)和长波近红外(LW-NIR),其波段范围分别为700—1100 nm和1100—2500 nm。180

近红外与中红外光谱分析的区别

主要区别是波长不同,应用领域不同。红外吸收光谱法是定性鉴定化合物及其结构的重要方法之一,在生物学、化学和环境科学等研究领域发挥着重要作用。无论样品是固体、液体和气体,纯物质还是混合物,有机物还是无机物,都可以进行红外分析。红外光谱法广泛应用于高分子材料、矿物、食品、环境、纤维、染料、粘合剂、油漆、毒

近红外与中红外光谱分析的区别

近红外光(NIR)是介于可见区和中红外区间的电磁波,不同文献中对其波长范围的划分不尽相同,美国试验和材料协会(ASTM)规定为700 nm至2500 nm。NIR常被化分为短波近红外(SW-NIR)和长波近红外(LW-NIR),其波段范围分别为700—1100 nm和1100—2500 nm。180

近红外光谱仪在食品领域的应用

  葡萄酒乙醇,含糖量,有机酸,含氮值,pH 值等  白酒 原料中的水分,淀粉,支链淀粉;酒醅中的水分,pH 值,淀粉和残糖等  啤酒大麦原料中的水分,麦芽糖;啤酒中的乙醇和麦芽糖等  饮料 (可乐、 果汁等)咖啡因,糖分,酸度,果汁真伪鉴别  调味品 (酱油、 醋等)蛋白质,氨基酸总量,总糖,还原

近红外光谱仪分析方法相关

  分析方法包括校正和预测两个过程:  (1)在校正过程中,收集一定量有代表性的样品(一般需要80个样品以上),在测量其光谱图的同时,根据需要使用有关标准分析方法进行测量,得到样品的各种质量参数,称之为参考数据。通过化学计量学对光谱进行处理,并将其与参考数据关联,这样在光谱图和其参考数据之间建立起一

近红外光谱分析技术的优势

  样品无须预处理可直接测量:近红外光谱测量方式有透射、反射和漫反射多种形式,适合测量液体、固体和浆状等形式的样品,因此,用途很广。最大的优点就是无须对样品进行任何预处理,如汽油可直接倒入测量杯中或将光纤探头直接插入汽油中进行测量,操作非常方便,几秒钟内完成光谱扫描。  光纤远距离测量:近红外光可以

近红外光谱仪分析技术的优势

 近红外光谱仪不管按何种方式设计,一般由光源、分光系统、测样器件、检测器、数据处理系统和记录仪(或打印机)等6部分构成。  近红外光谱仪分析技术的优势  样品无须预处理可直接测量:近红外光谱测量方式有透射、反射和漫反射多种形式,适合测量液体、固体和浆状等形式的样品,因此,用途很广。zui大的优点就是

近红外光谱分析技术的优势

    样品无须预处理可直接测量。 近红外光谱测量方式有透射、反射和漫反射多种形式,适合测量液体、固体和浆状等形式的样品,因此,用途很广。zui大的优点就是无须对样品进行任何预处理,如汽油可直接倒入测量杯中或将光纤探头直接插入汽油中进行测量,操作非常方便,几秒钟内完成光谱扫描。光纤远距离测量。近红外

浅析近红外光谱仪的分析方法

浅析近红外光谱仪的分析方法  【近红外光谱仪】当代红外光谱技术的发展已使红外光谱的意义远远超越了对样品进行简单的常规测试并从而推断化合物的组成的阶段。近红外光谱仪与其它多种测试手段联用衍生出许多新的分子光谱领域,例如,色谱技术与近红外光谱仪联合为深化认识复杂的混合物体系中各种组份的化学结构创造了机会

近红外光谱技术的优点和应用分析

现代近红外光谱分析是将光谱测量技术、计算机技术、化学计量学技术与基础测试技术的有机结合。是将近红外光谱所反映的样品基团、组成或物态信息与用标准或认可的参比方法测得的组成或性质数据采用化学计量学技术建立校正模型,然后通过对未知样品光谱的测定和建立的校正模型来快速预测其组成或性质的一种分析方法。近红外光

近红外光谱分析法简述

波长范围800~2500nm(12500~4000cm-1),优点:1、没有中红外光谱(Mid intra-red spectrum,MIR,4000~400cm-1)吸收带显示出的边缘干扰(fringe interference),故在一较大的吸收动态范围内这些吸收带强度与被测物浓度之间有线性关系