研究人员首次实现声子极化激元电激发

据最新一期《自然》杂志报道,美国纽约市立大学研究人员在创造新型光热材料方面迈出重要一步:他们首次实现了一种利用电流激发声子极化激元的新机制,为开发更低成本、更小巧的长波红外光源和更高效的冷却设备开辟了新途径。人们常常苦恼,手机用久了就发烫,未来这一问题有望解决,并且手机还有望内置微小传感器,以超高灵敏度和精确度识别危险化学品或污染物。声子极化激元是一种独特的电磁波,当光与材料晶格结构中的振动相互作用时,就会产生这种波。它具有许多独特性质,例如能将长波红外光的能量集中到极小的体积内,甚至小到几十纳米,还能形成高效热传导通道。这种“光热双优”的属性使其成为亚波长成像、分子传感器、电子器件内热管理等应用的理想选择。此次发现的关键在于,研究团队将单层石墨烯嵌在两块六方氮化硼(hBN)之间,构建出一种“三明治”结构。hBN中的双曲声子极化激元(HPhP)如同在材料内部反复折射的光线,与石墨烯中高速移动的电子发生强烈碰撞。电子与HPhP碰撞......阅读全文

研究人员首次实现声子极化激元电激发

据最新一期《自然》杂志报道,美国纽约市立大学研究人员在创造新型光热材料方面迈出重要一步:他们首次实现了一种利用电流激发声子极化激元的新机制,为开发更低成本、更小巧的长波红外光源和更高效的冷却设备开辟了新途径。人们常常苦恼,手机用久了就发烫,未来这一问题有望解决,并且手机还有望内置微小传感器,以超高灵

太赫兹声子极化激元产生及相干调制机理研究获进展

  近日,中国科学院上海光学精密机械研究所研究团队在太赫兹驱动声子极化激元产生及相干调制机理方面取得进展。  高速信号调制技术是光通信、数据中心、量子计算等领域的核心。近年来,硅基和铌酸锂基两大技术路线在材料集成、工艺突破与应用场景扩展方面均取得进展。目前已实现数百GHz的信号调制,但受限于电极微波

太赫兹声子极化激元产生及相干调制机理研究获进展

近日,中国科学院上海光学精密机械研究所研究团队在太赫兹驱动声子极化激元产生及相干调制机理方面取得进展。高速信号调制技术是光通信、数据中心、量子计算等领域的核心。近年来,硅基和铌酸锂基两大技术路线在材料集成、工艺突破与应用场景扩展方面均取得进展。目前已实现数百GHz的信号调制,但受限于电极微波与光波速

科学家首次在稀土晶体中发现双曲声子极化激元

  双曲材料因其独特的电磁特性被视为纳米光子学的核心载体之一,但其光学响应被限制在固定的双曲频段,极大限制了应用潜力。  中国地质大学(武汉)李国岗教授、戴志高教授团队联合新加坡南洋理工大学王岐捷教授、胡光维(南洋助理教授)团队首次在非双曲晶体钒酸钇中观察到“双曲表面声子极化激元”,突破了学界对双曲

我国科学家成功给低对称极化激元拍照

  基于极化激元的纳米光子学技术能够在深亚波长尺度实现对光子的操控,是未来实现高速光信息处理的关键。来自国家纳米科学中心等单位的研究人员成功给低对称极化激元拍了个照,实现了低对称声子极化激元的实空间成像,证实了近场“轴色散”效应,揭示了一种新的在纳米尺度实现光子操控的可行路径。相关研究成果12月12

苏州纳米所实现低对称光子晶体激子极化激元

光与物质的相互作用是光子器件发展的基石。光与物质之间的耦合具有偏振敏感性。而偏振选择性可以为光与物质相互作用提供新的自由度。原子层级的二维过渡金属硫化物(TMD)具有室温稳定的激子效应,成为研究光与物质相互作用的理想材料平台。在弱耦合范畴,单层TMD与各向异性人工纳米结构集成可以通过近场耦合实现激子

我国科学家成功给低对称极化激元拍照

原文地址:http://news.sciencenet.cn/htmlnews/2022/12/491104.shtm 科技日报北京12月13日电 (记者陆成宽)基于极化激元的纳米光子学技术能够在深亚波长尺度实现对光子的操控,是未来实现高速光信息处理的关键。来自国家纳米科学中心等单位的研究人员成

我国科学家在极化激元领域取得新进展

  如何在微观世界里更好地操控光,让通信、成像等技术实现新飞跃?我国一支科研团队通过国际合作,在极化激元领域取得最新进展,有望实现纳米尺度上光的精确操控并提升纳米级光电互联和光学传感等应用水平。研究成果18日由国际学术期刊《自然·纳米技术》在线发表。  极化激元是一种由入射光与材料表界面相互作用形成

等离激元多极子耦合系统研究

  近期,中国科学院合肥物质科学研究员固体物理研究所研究员王振洋团队在表面等离激元多极子耦合系统研究中取得进展,揭示了二极子-多极子耦合系统的远/近场和角辐射分布规律。  贵金属等离激元纳米颗粒的耦合模式具有高自由度、可调控的特点。两个等离激元纳米颗粒近场耦合会形成二聚体,导致等离激元的杂化,出现不

科学家提出补偿极化激元光子器件损耗的新路径

   在纳米光子学系统中,极化激元提供了一种超越传统光学衍射极限的手段,有助于高效能量存储和局部场增强,从而促进超紧凑和高速光学器件的发展。然而,在目前常用的极化激元光子器件中,由于本征损耗的限制,传输的信号会迅速衰减,其功能化应用面临巨大挑战。  近年来,香港大学和国家纳米科学中心科研人员密切合作

科学家实现红外频段的反向切伦科夫辐射

原文地址:http://news.sciencenet.cn/htmlnews/2023/5/500169.shtm为了构建基于极化激元的光电集成回路,迫切需要研发可在片上集成的纳米光源作为信息输入端口。“反向切伦科夫辐射”具有带电粒子运动方向与产生电磁辐射方向相反的特点,可以有效屏蔽运动粒子对辐射

邓少芝团队获中国电子学会自然科学奖一等奖

近日,中国电子学会公布2023年中国电子学会科学技术奖名单,中山大学电子与信息工程学院(微电子学院)教授邓少芝团队完成的项目“基于纳米材料的太赫兹波探测与产生新原理新器件”荣获自然科学奖一等奖。现代信息社会大量使用电磁波产生和探测技术。新兴技术发展,如6G通信、高分辨雷达、无人驾驶等,急需太赫兹波(

突破限制!非双曲材料中发现长程双曲极化激元

7月17日,记者从中国地质大学(武汉)获悉,该校李国岗教授、戴志高教授团队联合新加坡南洋理工大学王岐捷教授、胡光维教授团队的一项最新研究成果《非双曲材料中发现长程双曲极化激元》在《自然》杂志发表。双曲材料因其独特的电磁特性被视为纳米光子学的核心载体之一,但其光学响应被限制在固定的双曲频段,极大限制了

低维有机光子学方面实现了激子极化激元的传输与谐振

  纳米光子学主要研究如何在微纳米尺度上对光子运动进行操纵、调节和控制,在未来信号传播和信息处理方面具有广泛的应用前景。有机材料中的Frenkel激子具有高的激子结合能,能够与光子耦合形成稳定的激子极化激元(Exciton Polariton, EP)。这种激子光子强耦合作用对有机纳米线体系中光

合成复频波技术补偿极化激元光子器件的损耗研究获进展

 在纳米光子系统中,极化激元是一种由入射光与材料表界面相互作用形成的特殊电磁模式,能够实现纳米尺度上光信息的传输和处理。极化激元材料是构建光电互联芯片的重要材料基础。然而,由于光学材料本身的损耗限制,极化激元光子器件在应用推广方面存在一定困难。 为了解决这一挑战,中国科学院国家纳米科学中心研究员戴庆

超快电子显微镜助力超快结构动力学及近场研究

超快电子显微镜(UEM)凭借亚纳米-亚皮秒的时空分辨能力,成为非平衡态结构动力学及超快科学的重要研究手段。由于电子探针对结构变化和电场相位高度敏感,UEM在超快激光诱导层状材料的动态结构演化和近场研究中具有优势。飞秒激光激发二维层状材料的相干纵向呼吸声学声子已被广泛报道,而相干横向剪切声学声子的激发

超快电子显微镜助力超快结构动力学及近场研究

超快电子显微镜(UEM)凭借亚纳米-亚皮秒的时空分辨能力,成为非平衡态结构动力学及超快科学的重要研究手段。由于电子探针对结构变化和电场相位高度敏感,UEM在超快激光诱导层状材料的动态结构演化和近场研究中具有优势。飞秒激光激发二维层状材料的相干纵向呼吸声学声子已被广泛报道,而相干横向剪切声学声子的激发

等离激元多极子耦合系统研究取得进展

  近期,中国科学院合肥物质科学研究员固体物理研究所研究员王振洋团队在表面等离激元多极子耦合系统研究中取得进展,揭示了二极子-多极子耦合系统的远/近场和角辐射分布规律。  贵金属等离激元纳米颗粒的耦合模式具有高自由度、可调控的特点。两个等离激元纳米颗粒近场耦合会形成二聚体,导致等离激元的杂化,出现不

半导体所等提出免于退极化效应的光学声子软化新理论

通过晶体管持续小型化以提升集成度的摩尔定律已接近物理极限,但主要问题在于晶体管功耗难以等比例降低。有研究提出,进一步降低功耗有两种途径。一是寻找拥有比二氧化铪(HfO2)更高介电常数和更大带隙的新型高k氧化物介电材料;二是采用铁电/电介质栅堆叠的负电容晶体管,降低晶体管的工作电压和功耗。氧化物高k介

科学家利用合成复频波技术补偿极化激元光子器件的损耗

  在纳米光子系统中,极化激元是一种由入射光与材料表界面相互作用形成的特殊电磁模式,能够实现纳米尺度上光信息的传输和处理。极化激元材料是构建光电互联芯片的重要材料基础。然而,由于光学材料本身的损耗限制,极化激元光子器件在应用推广方面存在一定困难。  为了解决这一挑战,中国科学院国家纳米科学中心研究员

科学家实现室温下连续域束缚态中激子极化激元凝聚

近日,国家纳米科学中心研究员刘新风课题组与北京大学材料科学与工程学院研究员张青、清华大学物理系教授熊启华课题组合作,实现室温下连续域束缚态(BIC)中激子极化激元凝聚,在低功率注入下获得了具有小发散角和长程相干性的涡旋光束,并探索了不同离散BIC激子极化激元模式间的光学开关效应,为激子极化激元器件在

上海光机所等在协同激子极化激元玻色爱因斯坦凝聚研究中获进展

近期,中国科学院上海光学精密机械研究所先进激光与光电功能材料部红外光学材料研究中心研究员董红星和张龙团队,联合华东师范大学的科研人员,基于钙钛矿量子点薄膜体系解析了超荧光到协同激子极化激元凝聚的相变的动力学过程及物理机制。相关研究成果以Observation of Transition from S

科学家试制新型“激声”放大器

  9月8日(北京时间)报道,在今年庆贺激光诞生50周年之际,科学家正在研究一种新型的相干声束放大器,其利用的是声而不是光。科学家最近对此进行了演示,在一种超冷原子气体中,声子也能在同一方向共同激发,就和光子受激发射相似,因此这种装置也被称为“激声器”。   声子激发理论是2009

我国科学家突破片上纳米尺度光操控难题

  我国科学家在纳米尺度光操控领域取得重要进展。记者10日获悉,来自上海交通大学、国家纳米科学中心等单位的科研人员,成功实现芯片上纳米光信号的高效激发与路径分离,为开发更小、更快、能耗更低的下一代光子芯片奠定了坚实基础。相关研究成果发表于《自然·光子学》杂志。  随着芯片尺寸不断缩小、能耗要求持续降

声子激活原子,水晶变“磁铁”

  美国莱斯大学量子材料科学家发现,当原子做圆周运动时,它们也能创造奇迹:稀土晶体中的原子晶格受到一种名为手性声子的螺旋形振动被激活时,水晶就会变成“磁铁”。相关研究发表在最新一期《科学》杂志上。  在实验中,研究人员需要找到一种方法来驱动原子晶格以手性方式移动。他们使用的声子频率大约为10太赫兹。

新方法成功将超透镜成像分辨率提高一个量级

超透镜是一种利用纳米结构来聚焦光线的平面透镜,具有超轻超薄的结构和出色光学性能,被人们寄予替代传统光学透镜的厚望。20日,记者从国家纳米科学中心获悉,香港大学、国家纳米科学中心和英国帝国理工学院等单位的研究人员密切合作,开发出一种合成复频波方法,成功将超透镜的成像分辨率提高了约一个量级。相关研究成果

揭示MXenes电子—声子相互作用新机制

  近日,中国科学院大连化学物理研究所研究员袁开军团队与北京航空航天大学教授郭洪波、副教授李介博等合作,发现了MXenes中电子能量弛豫新通道,揭示了MXenes电子—声子相互作用新机制。相关成果发表在《自然—通讯》。  等离激元是金属表面电子的集体振荡,在金属纳米材料中比较常见。研究电子和声子之间

新方法成功将超透镜成像分辨率提高一个量级

利用极化激元材料和超构材料构筑的超透镜能够超越传统光学成像分辨率的极限,实现亚波长级别的微观结构和生物分子的更好观测,对物理芯片、化学材料和生命科学等领域产生广泛而革命性的影响。2000年,英国帝国理工学院John Pendry爵士首次提出了超透镜的概念,并预测其具有突破传统光学成像分辨率极限的能力

THz在凝聚态物理研究中的应用

THz波填补了红外光和微波的频率空白。使在全频范围内研究凝聚态物质与电磁波(光)的相互作用成为可能,特别是对固体元激发的研究具有重要意义。THz频率范围内的固体元激发有:离子晶体的横光学声子和纵光学声子,离子晶体的横光学声子与光子相互作用产生的极化激元,金属的等离子体振荡,金属和半导体的回旋共振等。

我所揭示MXenes电子—声子相互作用新机制

近日,我所分子反应动力学国家重点实验室、大连光源科学研究室(二十五室)袁开军研究员团队与北京航空航天大学郭洪波教授、李介博副教授等合作,发现了MXenes中电子能量弛豫新通道,揭示了MXenes电子—声子相互作用新机制。该成果对设计等离激元新材料,实现材料高效光电、光热转化等提供了新思路。  等离激