新策略可有效稳定负载型低铱催化剂结构长期稳定性

华东理工大学教授杨化桂、副教授刘鹏飞、教授戴升团队,发现了一种载体原位溶出诱导的物种捕获效应,可有效稳定催化剂在阳极析氧反应(OER)强氧化环境中的稳定性,加深了非氧化物材料作为OER催化剂载体的工况构效关系理解,并为可控构建超薄催化电极结构提供了一种全新思路,进而有助于大幅降低PEM电解水技术对贵金属的高度依赖性。相关研究近日发表于《德国应用化学》。可再生能源驱动的质子交换膜(PEM)电解水制氢技术是解决能源枯竭和环境污染问题的有效途径,然而其大规模部署目前仍然高度依赖贵金属催化电极材料,其中OER中铱(Ir)基催化剂的用量成为制约该技术未来发展的关键。过渡金属氮化物具有类金属的导电性,是理想的新型电催化剂载体。然而,过渡金属氮化物在OER强氧化环境中的结构演化严重影响催化剂的长期稳定性,识别其工况稳定的真实构效关系有助于可控构建新型负载型低铱催化剂材料。研究团队以Ir/氮化钛(TiN)负载型催化剂为模型材料,追踪了其在长期O......阅读全文

高性能制氢装备突破规模化商用难题

  “2024年,我校化学化工学院副教授陶华冰带领团队研发的质子交换膜制氢电解槽取得突破性进展,获批国家能源局首台(套)重大技术装备,并成功走向市场。”4日,中国科学院院士、厦门大学党委书记张荣带来好消息。目前,该成果已成功应用在新疆首个综合能源站,并于近期再度斩获8000万元新订单,标志着我国在质

高性能制氢装备突破规模化商用难题

  “2024年,我校化学化工学院副教授陶华冰带领团队研发的质子交换膜制氢电解槽取得突破性进展,获批国家能源局首台(套)重大技术装备,并成功走向市场。”4日,中国科学院院士、厦门大学党委书记张荣带来好消息。目前,该成果已成功应用在新疆首个综合能源站,并于近期再度斩获8000万元新订单,标志着我国在质

高研院等在质子交换膜电解水制氢研究中取得进展

  发展氢能的“初心”是基于可再生能源的电解水绿色制氢,但高的贵金属催化剂用量是质子交换膜电解水制氢成本居高不下的主要原因之一。中国科学院上海高等研究院杨辉团队与美国凯斯西储大学戴黎明课题组合作在氢能源研究领域取得新进展,发展了碳缺陷驱动的铂原子团自发沉积新方法,实现了电解水制氢阴极Pt用量大幅降低

上海高研院在质子交换膜电解合成双氧水研究方面获进展

基于质子交换膜(PEM)反应器的过氧化氢(H2O2)电合成,是一种很有前景的工业生产H2O2的方法。分子催化剂被认为是研究电催化二电子氧还原(2e- ORR)的新方案;特别是,碳载体上的氧官能团(OFGs)已被证明对分子中心的原子局部微环境具有重要影响,可以调节电子结构并改变2e- ORR性能,被称

“高比功率质子交换膜燃料电池金属板电堆技术”通过鉴定

  近日,中国科学院大连化学物理研究所研究员邵志刚团队研发的具有自主知识产权的“高比功率质子交换膜燃料电池金属板电堆技术”通过了中国石油和化学工业联合会组织的科技成果评价。评价委员会专家一致认为,该成果创新性强,处于国际先进水平,其中电堆体积比功率和低温环境适应性处于国际领先水平,同意通过鉴定。  

阳离子交换膜和阴离子交换膜怎么判断

判断正负极,看哪边多了啥离子,靠近那边的就是啥离子膜。靠近负极的由于负极产生更多的阳离子,导致不能呈电中性,所以负极就是阳离子膜。正极就相反了。

学者合作在酸性介质电解水释氧催化剂研究方面取得进展

图1(a,b)扭转应变的GB-Ta0.1Tm0.1Ir0.8O2-δ纳米催化剂TEM表征;(c-f)GB-Ta0.1Tm0.1Ir0.8O2-δ纳米催化剂的几何相位分析;(g,h)TaxTmyIr1-x-yO2-δ纳米催化剂的电化学表征  在国家自然科学基金项目(批准号:21776248、21676

质子交换膜燃料电池用非贵金属催化剂研究取得新进展

  质子交换膜燃料电池用非贵金属催化剂研究取得新进展  近日,中科院大连化学物理研究所张华民研究员领导的研究团队在质子交换膜燃料电池用非贵金属催化剂——氮掺杂纳米炭非贵金属催化剂的研究中取得重要突破,研究成果发表在Energy & Environmental Science(DOI:

怎么判断离子交换膜是阳还是阴离子交换膜

离子交换膜的选择要根据问题的目的判断,如该题由铬酸钾溶液电解制重铬酸钾,阳极水电离出来的氢氧根放电,然后氢离子与铬酸根反应生成重铬酸根,钾离子有剩余,阴极氢离子放电,氢氧根有剩余,根据电荷守恒,阳极剩余的钾离子需通过阳离子交换膜由阳极移向阴极,选阳离子交换膜。

“高比功率质子交换膜燃料电池金属板电堆技术”通过科技成果评价

近日,中国科学院大连化学物理研究所研究员邵志刚团队研发的具有自主知识产权的“高比功率质子交换膜燃料电池金属板电堆技术”,通过了中国石油和化学工业联合会组织的科技成果评价。评价委员会专家一致认为:该成果创新性强,处于国际先进水平,其中,电堆体积比功率和低温环境适应性处于国际领先水平,同意通过鉴定。“高

什么是离子交换膜?

制成膜状的固体离子交换剂,称为离子交换膜,它具有离子选择透过性,用于膜分离操作。液体离子交换剂是一类具有离子交换功能的有机液体,作为萃取剂用于萃取操作。固态离子交换剂具有网状空间结构的骨架,以连接可电离的交换基团。

离子交换膜的作用

离子交换膜可装配成电渗析器而用于苦咸水的淡化和盐溶液的浓缩。电渗析装置的淡化程度可达一次蒸馏水纯度。也可应用于甘油、聚乙二醇的除盐,分离各种离子与放射性元素、同位素,分级分离氨基酸等。此外,在有机和无机化合物的纯化、原子能工业中放射性废液的处理与核燃料的制备,以及燃料电池隔膜与离子选择性电极中,也都

研究提出一种高效稳定电解水制氢电催化剂新方法

近日,太原理工大学化学与化工学院李晋平教授团队刘光教授课题组在质子交换膜(PEM)电解水制氢领域取得进展,提出一种高效稳定的阳极侧的氧析出反应(OER)电催化剂新思路,相关研究成果发表在Advanced Functional Materials上。电化学水分解被视为生产氢气的一种环保且可持续的技术。

大连化物所揭示酸性水氧化晶格氧介导—氧空位反应机制

  近日,中国科学院大连化学物理研究所研究员吴忠帅、肖建平团队合作,在电催化水氧化催化剂设计和机理解析研究方面取得进展。合作团队发展了Rh掺杂和RuO2表面氧空位的协同新策略,实现酸性水氧化过程的高效稳定催化转化,并揭示了晶格氧介导—氧空位反应机制(LOM-OVSM)。  电催化析氧反应(OER)作

新方法制氢,铱使用量减少95%

科技日报讯 (记者张佳欣)5月10日,发表在《科学》杂志上的一项研究称,日本理化学研究所可持续资源科学中心的研究人员在不改变氢气产生速度的情况下,将反应所需的铱减少了95%。这一突破或有助提高生产“绿氢”的能力。生产“绿氢”需要一种极其稀有的金属——铱,但铱资源稀缺是个大问题。研究团队试图绕过这一“

离子交换膜的性质介绍

  均相膜的电化学性能较为优良,但力学性能较差,常需其他纤维来增强。非均相膜的电化学性能比均相膜差,而力学性能较优,由于疏水性的高分子成膜材料和亲水性的离子交换树脂之间粘结力弱,常存在缝隙而影响离子选择透过性。  离子交换膜的膜电阻和选择透过性是膜的电化学性能的重要指标。阳离子在阳膜中透过性次序为:

阴离子交换膜的概述

阴离子交换膜的本质是一种碱性电解质,对阴离子具有选择透过性作用,因此还被称为离子选择透过性膜。一般以-NH3+、-NR2H+或者-PR3+等阳离子作为活性交换基团,并且在阴极产生OH-作为载流子,经过阴离子交换膜的选择透过性作用移动到阳极。阴离子交换膜具有非常广泛的应用,它是分离装置、提纯装置以及电

关于离子交换膜的介绍

  用途  聚乙烯异相离子交换膜含有足够的固定基团和可解离的离子,对溶液中离子具有一定的选择透过性和导电性,广泛应用于电化学部门中,分离不同类型的离子。例如海水、苦咸水的淡化,溶液的脱盐浓缩,电解制备无机化合物以及放射性元素的回收提纯,锅炉用水的软化脱盐,冶金、煤炭、电子、医药、化工、食品等工业品处

阳离子交换膜的作用

1、可装配成电渗析器而用于苦咸水的淡化和盐溶液的浓缩。2、也可应用于甘油、聚乙二醇的除盐,分离各种离子与放射性元素、同位素,分级分离氨基酸等。3、在有机和无机化合物的纯化、原子能工业中放射性废液的处理与核燃料的制备,以及燃料电池隔膜与离子选择性电极中,也都采用离子交换膜。4、离子交换膜在膜技术领域中

为什么要先将水通过阳离子交换膜后通过阴离子交换膜

如果先通过阴离子交换膜,把水中的阴离子换成OHˉ,导致水呈碱性,则水中的Ca²⁺、Mg²⁺等阳离子就会与OHˉ反应,生成沉淀,附着在交换膜上,影响交换膜工作。

酸性OER催化剂的催化性能研究

  氢能具有清洁可再生等优势,是最有潜力替代传统化石燃料的新型能源。电解水制氢是在新能源快速发展背景下,完善清洁能源消纳长效机制以及实现电网和气网互通的重要手段。质子交换膜(PEM)电解槽是高效的电解水装置,具有服役电流大以及制取气体纯净等优点,但是酸性OER催化剂的设计是制约其规模化应用的主要因素

依托我所技术开发的高温质子交换膜燃料电池模块获得中国船级社颁发的型式认可证书

近日,依托我所醇类燃料电池及复合电能源研究中心(DNL0305组群)技术开发的高温质子交换膜燃料电池模块,获得中国船级社(CCS)颁发的型式认可证书,被CCS称为国内首款通过认证的以高温质子交换膜为核心技术的燃料电池模块产品,标志该类燃料电池成为船舶制造业绿色发展行动重要解决方案之一。本次认证的高温

阴离子交换交换膜能让水分子通过吗

水分子要比离子大得多,是难以通过阴离子交换膜的。阳离子交换膜一般能使阳离子通过,主要是H+、Na+等。阴离子交换膜的本质是一种碱性电解质,对阴离子具有选择透过性作用,因此还被称为离子选择透过性膜。一般以-NH3+、-NR2H+或者-PR3+等阳离子作为活性交换基团,并且在阴极产生OH-作为载流子,经

加错试剂,迎来电解水制氢催化剂新突破

西湖大学人工光合作用与太阳能燃料中心教授孙立成团队开发了一种新型非贵金属催化剂CAPist-L1的制备工艺,即向溶液中人为引入不溶纳米颗粒,在常温、常压条件下通过简单浸泡法,一步合成非贵金属催化剂——CAPist-L1。日前,相关研究成果发表在《自然—催化》。 CAPist-L1材料呈现多孔的透气结

离子交换膜的概念和功能

制成膜状的固体离子交换剂,称为离子交换膜,它具有离子选择透过性,用于膜分离操作。液体离子交换剂是一类具有离子交换功能的有机液体,作为萃取剂用于萃取操作。固态离子交换剂具有网状空间结构的骨架,以连接可电离的交换基团。

简介离子交换膜的制备方法

  离子交换膜分均相膜和非均相膜两类,它们可以采用高分子的加工成型方法制造。  ①均相膜  先用高分子材料如丁苯橡胶、纤维素衍生物、聚四氟乙烯、聚三氟氯乙烯、聚偏二氟乙烯、聚丙烯腈等制成膜,然后引入单体如苯乙烯、甲基丙烯酸甲酯等,在膜内聚合成高分子,再通过化学反应,引入所需的功能基团。均相膜也可以通

离子交换膜的用途是什么

离子交换树脂,半透膜应该是两样东西是用来制备纯水的通过在孔径只容水分子通过的膜的一侧施加压力,让水通过膜体而让杂质留下来,能够去除水中的绝大多数悬浮颗粒而离子交换树脂通过化学反应,可以让多种离子和有机物结合而被从水中去除掉,是纯水制备中不可少的一步。

关于离子交换膜的应用介绍

  离子交换膜可装配成电渗析器而用于苦咸水的淡化和盐溶液的浓缩。电渗析装置(见图)的淡化程度可达一次蒸馏水纯度。也可应用于甘油、聚乙二醇的除盐,分离各种离子与放射性元素、同位素,分级分离氨基酸等。此外,在有机和无机化合物的纯化、原子能工业中放射性废液的处理与核燃料的制备,以及燃料电池隔膜与离子选择性

研究揭示晶格氧介导—氧空位反应机制

原文地址:http://news.sciencenet.cn/htmlnews/2023/4/497873.shtm近日,中国科学院大连化学物理研究所研究员吴忠帅团队与研究员肖建平团队合作,在电催化水氧化催化剂设计和机理解析研究方面取得新进展。合作团队发展了Rh掺杂和RuO2表面氧空位的协同新策略,