自养微生物驱动氢氧化锑还原及尾矿修复获揭示

近日,广东省科学院生态环境与土壤研究所研究员孙蔚旻团队在国家重点研发计划、国家自然科学基金等项目的资助下,研究揭示了自养微生物驱动的氢氧化耦联锑还原过程及其尾矿修复潜能,并进行了相关实验验证。相关成果发表于《微生物组》(Microbiome)。Azospirillum和Hydrogenophaga分别驱动氢氧化锑还原过程的代谢机制摘要图。研究团队供图 大规模的采矿和工业活动会造成严重的锑污染问题。锑矿尾矿污染环境中经常能检测到高浓度的锑,当这种锑被释放到水生环境后,通过水流容易对下游环境造成严重污染风险。有研究发现,微生物在锑的迁移转化过程中可发挥重要作用。原因是它能将溶解度高的五价锑还原为迁移性较低的三价锑,能阻止其向下游环境扩散。 还有研究报道显示,微生物可以以有机物或还原态硫为底物驱动五价锑还原过程,而氢气作为一种在采矿和水体环境中常见的中间产物,也可能作为电子供体驱动五价锑还原过程,但关于环境中氢气氧化耦联锑还原......阅读全文

自养微生物驱动氢氧化锑还原及尾矿修复获揭示

  近日,广东省科学院生态环境与土壤研究所研究员孙蔚旻团队在国家重点研发计划、国家自然科学基金等项目的资助下,研究揭示了自养微生物驱动的氢氧化耦联锑还原过程及其尾矿修复潜能,并进行了相关实验验证。相关成果发表于《微生物组》(Microbiome)。Azospirillum和Hydrogenophag

自养微生物的纯度检查

  由于硝化细菌培养过程,常会有异养型细菌伴生,所以必须用多种有机营养培养基检查培养物是否有异养型细菌污染。常用的有机营养培养基是:BPY培养基检查异养型细菌,麦芽汁培养基检查酵母菌,马铃薯葡萄糖培养基检查霉菌。上述培养基平板或斜面接种培养物后若有菌生长,表明分离瓶中培养物不纯;不生长,则为基本纯的

关于自养微生物的简介

  以二氧化碳作为主要或唯 一的碳源,以无机氮化物作为氮源,通过细菌光合作用或化能合成作用获得能量的微生物。  硫细菌靠吸收H2S并将其氧化放能  铁细菌 将2价铁氧化成3价铁放能硝化细菌 氧化亚硝酸盐  高中常见的化能自养一般就这几个学习从合成氨厂周围土壤或通气良好的耕地土壤中采样、富集培养、分离

简述自养微生物的实验器材

  (一) 菌源  合成氨车间周围和堆放合成氨场地周围土样。  (二)培养基  硝化细菌分离培养基、硝化细菌增殖培养基、检查有否异养型微生物的培养基(肉膏蛋白胨酵母膏培养基(BPY),麦芽汁培养基、马铃薯葡萄糖培养基),参见附录二。  (三)试剂  格里斯氏试剂(亚硝酸盐试剂)、二苯胺硫酸试剂(硝酸

简述自养微生物的原理和特征

  1、基本原理  化能自养微生物由于它们在农业生产、能源开发、冶金、采矿等方面的实际应用及在产能代谢、分子遗传等理论研究方面的重要性,日益受到人们重视,本次实验以硝化细菌为代表,介绍化能自养微生物的分离与纯化。  2、主要特征  硝化细菌是化能自养菌类群中主要生理类群之一。包括亚硝化细菌和硝化细菌

关于自养微生物实验的内容介绍

  (一)采样  按实验6—1采集土样,选合成氨车间和堆放合成氨场地周围土样。  (二)富集培养  称取土样1g。接入到盛有20 m1硝化细菌增殖培养液的250 ml锥形瓶中,28℃振荡培养10-14d,每隔几天在白瓷板上分别加2—3滴格里斯氏试剂及二苯胺硫酸试剂。然后用无菌滴管取出1滴增殖培养液的

自养微生物的硅胶平板分离法介绍

  (1)制取硅胶平板 取等体积的盐酸(HC1比重1.09)和硅酸钠(比重1.10)溶液,徐徐加入,缓慢混合,均匀搅拌,分装于100-00 m1透析袋中.水中透析48h,其间换蒸馏水6—8次,待透析袋内的硅酸纳溶液无色透明后,高压蒸汽灭菌或过滤除菌。灌浇硅胶平板时,注意无菌操作技术,分别吸取预先配制

关于自养微生物的两类菌的介绍

  除在土壤氮素养分转化及自然界氮素循环起重要作用外,由硝化细菌组装的亚硝酸微生物传感器,可快速检测大气和水中的亚硝酸浓度,在环境监测中发挥作用。培养硝化菌的温度,因菌源而异,从中温环境下分离的菌株,最适生长温度为26—28℃,从高温环境中分离的菌株,40℃时生长良好,该菌喜中性或微碱性环境,倾向于

自养菌的简介

  这类微生物能氧化某种无机物并利用所产生的化学能还原二氧化碳和生成有机碳化合物。自然界中化能自养菌种类不多,并且氧化无机物的专性很强,例如硝化杆菌只能氧化亚硝酸盐。化能自养菌在土壤中有相当数量,对物质转化有一定作用。其能源为还原态的无机物,如铵盐、亚硝酸、硫、硫化氢、氢和亚铁化合物等;碳源为二氧化

什么是自养菌?

  自养菌(prototroph) 是指能以简单的无机碳水化合物(如二氧化碳、碳酸盐)作为碳源,以无机的氮、氨、或硝酸盐作为氮源,合成菌体所需的复杂有机物质的细菌。此类细菌所需能量可来自无机化合物的氧化,亦可通过光合作用而获得能量。  这类微生物能氧化某种无机物并利用所产生的化学能还原二氧化碳和生成

自养微生物光合同化碳层次分布与传输研究获进展

  由中科院亚热带农业生态研究所主持工作副所长吴金水研究员领衔的农业生态过程方向研究团队近日在土壤自养微生物光合同化碳的层次分布与传输研究方面取得了新进展。   该团队在前期发现土壤微生物具有可观的碳同化能力的基础上,运用同位素连续标记技术结合分子生物学技术,对土壤自养微生物光合同化碳的层次分布与

自养微生物的稀释法和微口滴管滴分法的介绍

  1、稀释法  按稀释分离方法取富集培养液稀释至10-4、10-3、10-6三个稀释度,分别用无菌滴管于上述稀释液中吸取培养物1—2滴接种10-20瓶硝化细菌增殖培养液中,28℃恒温箱中培养3周后,依前述方法检验NO2-的减少和NO3-的增长。  2、微口滴管滴分法  此法依据是接种的每小滴培养液

自养菌有哪些特点?

  凡以有机物为碳源、能源和供氢体的微生物称为化能有机营养型微生物,也称化能异养型微生物。该类型包括的微生物种类最多,作用也最强。已知的绝大多数细菌、放线菌、全部真菌和原生动物均属于此类型。化能异养菌的具体营养要求随种类而异。不同类群对碳源、氮源、矿质元素及生长素的需求表现出极大的差异。

自养菌的特点介绍

  凡以有机物为碳源、能源和供氢体的微生物称为化能有机营养型微生物,也称化能异养型微生物。该类型包括的微生物种类最多,作用也最强。已知的绝大多数细菌、放线菌、全部真菌和原生动物均属于此类型。化能异养菌的具体营养要求随种类而异。不同类群对碳源、氮源、矿质元素及生长素的需求表现出极大的差异。

G蛋白耦联型受体简介

  G蛋白耦联型受体是指受体和酶或离子通道之间的相互作用通过一种结合GTP的调节蛋白介导完成的。配体与受体结合后通过G蛋白间接作用于酶或离子通道,从而调节细胞的生理活动。  G蛋白耦联型受体为7次跨膜蛋白,因此亦有人将此类受体称为七次跨膜受体。受体本身不具备通道结构,也无酶活性,它是通过与脂质双层中

G蛋白耦联型受体简介

G蛋白耦联型受体为7次跨膜蛋白,因此亦有人将此类受体称为七次跨膜受体。受体本身不具备通道结构,也无酶活性,它是通过与脂质双层中以及膜内侧存在的包括G蛋白等一系列信号蛋白质分子之间级联式的复杂的相互作用来完成信号跨膜转导的,因此也称促代谢型受体。G蛋白耦联型受体包括多种神经递质、肽类激素和趋化因子的受

G蛋白耦联受体的分类

A类(或第一类,视紫红质样受体)B类(或第二类,分泌素受体家族)C类(或第三类,代谢型谷氨酸受体)D类(或第四类,真菌交配信息素受体)E类(或第五类,环腺苷酸受体)F类(或第六类,Frizzled/Smoothened家族)其中第一类即视紫红质样受体包含了绝大多数种类的G蛋白耦联受体。它被进一步分为

微生物检验之氢氧化钾拉丝试验操作

学鉴定试验操作要点氢氧化钾拉丝试验:(1)原理:革兰阴性的细胞壁在稀碱溶液中易于破裂,释放出未断裂的DNA螺旋,使氢氧化钾菌悬液呈现粘性,可用接种环搅拌后拉出粘丝来,而革兰阳性细菌在稀碱溶液中没有上述变化。 (2)方法:取1滴40g/L氢氧化钾水溶液(应新鲜配制)于洁净玻片上,取新鲜菌落少许,与氢氧

自养菌的抑制作用

  天然矿泉水不适合采取任何种类的杀菌处理,经过装瓶后它们经常在储存几个月后才被销售出去。因此,考虑到人体的健康因素,了解水中病原菌和指示菌的存活能力尤为重要。许多早期有关水中细菌存活率的文献都指出“自灭”和“消减”可作为海水或淡水中来源于粪便的细菌变化的惟一指标,这主要归功于海水的杀菌特性和淡水的

G蛋白耦联型受体的组成

受体受体在结构上均为单体蛋白,由约300~400个氨基酸残基组成,有一个由30-50个氨基酸组成的细胞外N-末端,接着在肽链中出现7个α螺旋的跨膜结构,每个疏水跨膜区段由20~25个氨基酸组成,但各区段之间由数目不等的氨基酸组成的环状结构连接,其中1-2,3-4,5-6环在胞内侧,2-3,4-5,6

光[能]自养生物的定义

中文名称光[能]自养生物英文名称photoautotroph定  义能利用光能将无机化合物合成自身营养物的生物。包括绿色植物、蓝藻和光合细菌。应用学科生态学(一级学科),生理生态学(二级学科)

什么是G蛋白耦联型受体?

G蛋白耦联型受体是指受体和酶或离子通道之间的相互作用通过一种结合GTP的调节蛋白介导完成的。配体与受体结合后通过G蛋白间接作用于酶或离子通道,从而调节细胞的生理活动。

化能自养菌有哪些特点?

  凡以有机物为碳源、能源和供氢体的微生物称为化能有机营养型微生物,也称化能异养型微生物。该类型包括的微生物种类最多,作用也最强。已知的绝大多数细菌、放线菌、全部真菌和原生动物均属于此类型。化能异养菌的具体营养要求随种类而异。不同类群对碳源、氮源、矿质元素及生长素的需求表现出极大的差异。

化能自养生物的定义

在生物的营养摄取方式的分类中,作为电子供体的无机物在细胞内进行化学暗反应而获得能量的一类生物,称为化能自养生物。是光能自养生物的对应词。指少数细菌利用无机化合物的氧化作用中获得能量以进行生物合成(包括二氧化碳的同化作用)。这些反应包括氨氧化为亚硝酸盐,或亚硝酸盐氧化成硝酸盐);硫化氢氧化为硫(无色硫

G蛋白耦联型受体的组成介绍

  受体  受体在结构上均为单体蛋白,由约300~400个氨基酸残基组成,有一个由30-50个氨基酸组成的细胞外N-末端,接着在肽链中出现7个α螺旋的跨膜结构,每个疏水跨膜区段由20~25个氨基酸组成,但各区段之间由数目不等的氨基酸组成的环状结构连接,其中1-2,3-4,5-6环在胞内侧,2-3,4

关于化能自养菌的相关介绍

  化能自养菌又称无机营养菌(或生物)或化能无机营养菌(或生物)。一类不依赖任何有机营养物即可正常生长、繁殖的微生物(或生物),是属于能氧化某种无机物并利用所产生的化学能还原二氧化碳和生成有机碳化合物。  这类微生物能氧化某种无机物并利用所产生的化学能还原二氧化碳和生成有机碳化合物。自然界中化能自养

G蛋白耦联型受体的功能简介

  G蛋白耦联型受体介导的信号转导可通过不同的通路产生不同的效应,但信号转导的基本模式大致相同,主要过程包括:  (1)配体与受体结合;  (2)受体活化G蛋白;  (3)G蛋白激活或抑制下游效应分子;  (4)效应分子改变细胞内第二信使的含量与分布;  (5)第二信使作用于相应的靶分子,使之构象改

关于自养菌的起源的相关介绍

  一种有呼吸链的细菌能够利用氢,将氢原子活化,形成NADH2,进入呼吸链,产生ATP。这是生命的很大的进步。因为,早先生物利用有机物质产生NADH2,现在是利用无机物质产生NADH2。这种细菌一开始利用氢是为了获得ATP。  生命运动←ATP← 呼吸链 ← NADH2← 氢  这种细菌利用氢形成N

耦联到抗体上的荧光团探针

荧光团探针的选择依赖于下面的重要标准: A.  仪器。比如,光源,滤片,检测系统。B.  多标记中对探针色彩区分程度的要求。例如,若丹明红-X (RRX)和德克萨斯红(TR)荧光素的区别就比四甲基若丹明(TRITC)或者Cy3的区别明显。C.  要求的灵敏度。比如,Cy3和Cy5就比其他的荧光团探针

关于化能自养菌的相关介绍

  化能自养菌又称无机营养菌(或生物)或化能无机营养菌(或生物)。一类不依赖任何有机营养物即可正常生长、繁殖的微生物(或生物),是属于能氧化某种无机物并利用所产生的化学能还原二氧化碳和生成有机碳化合物。  这类微生物能氧化某种无机物并利用所产生的化学能还原二氧化碳和生成有机碳化合物。自然界中化能自养