科学家突破固态钠电池枝晶难题

近日,西安交通大学科研团队在固态钠电池研究中取得新进展,研究成果发表在《先进能源材料》。 固态钠电池是潜在的高能量密度和高安全性的下一代储能电池技术,其中固态电解质决定了固态电池电化学性能的基础。NASICON型Na3Zr2Si2PO12(NZSP)氧化物陶瓷固态电解质由于其高离子电导率、空气稳定性和高剪切模量的优点而受到广泛关注,但枝晶问题极大限制了NZSP基全固态电池技术的推广应用,目前关于NZSP固态电解质中的枝晶生长机制尚不明确。 针对以上问题,西安交通大学教授韩晓刚团队和宋忠孝团队通过原位光学观测、原位显微CT和多物理场模拟研究了NZSP 固态电解质中的枝晶生长和裂纹扩展的演变。通过研究裂纹和枝晶形态的变化特征,揭示了枝晶渗透与裂纹扩展之间的相互驱动关系,详细分析了不同电流密度下的枝晶生长和裂纹扩展特征,研究了裂纹偏转与电流密度的关系。 结合多物理场模拟,解耦了枝晶扩展过程中的机械损伤和应力分布,揭示了裂纹偏......阅读全文

科学家突破固态钠电池枝晶难题

  近日,西安交通大学科研团队在固态钠电池研究中取得新进展,研究成果发表在《先进能源材料》。  固态钠电池是潜在的高能量密度和高安全性的下一代储能电池技术,其中固态电解质决定了固态电池电化学性能的基础。NASICON型Na3Zr2Si2PO12(NZSP)氧化物陶瓷固态电解质由于其高离子电导率、空气

研究人员提出全固态电池锂枝晶调控新策略

  近日,北京大学深圳研究生院新材料学院教授邹如强与副研究员高磊团队联合南方科技大学等单位,在《科学进展》发表最新研究。研究团队创新性地提出并实现了一种“引导+限制”的锂枝晶动态调控策略,通过对固态电解质层进行结构设计,成功实现了对锂枝晶的有效疏导与自限生长。  全固态锂金属电池因其优异的安全性能和

研究人员提出全固态电池锂枝晶调控新策略

近日,北京大学深圳研究生院新材料学院教授邹如强与副研究员高磊团队联合南方科技大学等单位,在《科学进展》发表最新研究。研究团队创新性地提出并实现了一种“引导+限制”的锂枝晶动态调控策略,通过对固态电解质层进行结构设计,成功实现了对锂枝晶的有效疏导与自限生长。全固态锂金属电池因其优异的安全性能和更高的理

可充电锂电池枝晶难题破解

  据最新一期《焦耳》杂志报道,美国麻省理工学院研究人员解释了可充电锂电池枝晶的形成原因以及如何防止其穿过电解液的方法。这一发现最终可能开启一种新型可充电锂电池的设计之门,这种电池比目前的版本更轻、更紧凑、更安全。  到目前为止,可充电锂金属电池的商业用途还很有限,其中一个原因是枝晶。枝晶可在锂表面

单锂离子导电准固态聚合物刷电解质:无枝晶锂金属电池

  在过去的几十年,锂离子电池的能量密度已经达到250 Wh kg-1、但仍不能满足能源时代电动汽车、无人驾驶飞机、智能电网的快速扩张和前所未有的电能消耗需求,因此推动更高能量密度的储能装置发展势在必行。目前,由具有最高能量密度 (3860 mAh g-1) 和最低电化学电位 (-3.04 V vs

无阳极钠固态电池面世

首个无阳极钠固态电池问世。图片来源:物理学家组织网美国科学家最新研制出全球首个无阳极钠固态电池。这一成果有助开发出廉价且能快速充电的大容量电池,以用于电动汽车和电网。相关研究论文发表于最新一期《自然·能源》杂志。锂基电池已成为电动汽车和移动设备的标配,但其性能受到多方面因素制约。首先,锂在地壳中的储

固态钠电池的性能特点

固态钠电池(SSSB)兼具固态电池、钠离子电池双重性能,是下一代理想的储能电池。与锂离子电池相比,固态钠电池具有成本低、安全性能出色等优势,与液态电池相比,固态钠电池具有热稳定性好、电池能量密度高、安全性高等优势。凭借其优异性能,近年来,固态钠电池受到全球多个国家高度关注,但作为新型电池,固态钠电池

固态钠电池的特点和性能

固态钠电池(SSSB)兼具固态电池、钠离子电池双重性能,是下一代理想的储能电池。与锂离子电池相比,固态钠电池具有成本低、安全性能出色等优势,与液态电池相比,固态钠电池具有热稳定性好、电池能量密度高、安全性高等优势。凭借其优异性能,近年来,固态钠电池受到全球多个国家高度关注,但作为新型电池,固态钠电池

固态钠电池电解质的应用

固态钠电池电解质主要包括固态聚合物电解质(SPEs)、无机固态电解质(ISEs)、复合固态电解质(CSEs)三种,研究最广泛的是氧化物、硫化物和硼氢化物。电解质材料是制约固态钠电池发展的最重要因素,为实现固态钠电池规模化应用,相关企业仍需进一步探索新型固态钠电池电解质材料。

科学家原位精准测定锂枝晶生长机理

AFM—ETEM纳米电化学测试平台,可实现原位观测纳米固态电池中锂枝晶生长机制及其力学性能和力—电耦合精准定量测量。  1月6日,Nature Nanotechnology发表了燕山大学亚稳材料制备技术与科学国家重点实验室教授黄建宇、沈同德与国内外科学家合作的一项研究论文,题为Lithium whi

新型高能效全固态钠空气电池问世

韩国浦项科技大学材料科学与工程系研究团队成功开发出一种高容量、高效率的全固态钠空气电池,无须特殊设备就能可逆地利用钠(Na)和空气。相关论文发表在最新一期《自然·通讯》杂志上。蓄电池在电动汽车和储能系统等绿色技术中具有广泛应用。“金属—空气电池”被称为下一代高容量蓄电池,可从地球上的氧气和金属等丰富

固态钠电池实现创纪录金属循环率

原文地址:http://news.sciencenet.cn/htmlnews/2023/12/514860.shtm科技日报讯 (记者张佳欣)美国马里兰大学研究人员开发出一种固态钠电池架构,其性能优于目前的钠离子电池。通过使用钠金属作为负极以获得更高的能量密度,该电池实现了创纪录的室温下固态钠-金

如何减缓锂枝晶的形成对锂电池造成的影响

锂枝晶的形成,是目前锂电行业无法规避的一个技术难题,只要锂离子电池充放电,锂离子还原时就会形成锂枝晶。并且经过长时间的堆积,当锂枝晶长到一定长度的时候就会刺破隔膜导致锂离子电池内部发生短路,一旦锂离子电池内部发生短路轻则锂离子电池报废,严重时还会威胁到人生安全。锂枝晶形成除了工艺和自然因素,其他使用

福州大学ESM:界面过程控制实现无枝晶锌离子电池

  水系锌离子电池中锌金属的界面反应复杂且不稳定,电解质的加速消耗和局部pH的变化容易造成了树状枝晶的快速生长以及副反应发生。这一问题会对电池不可避免的危害,阻碍了锌离子电池的发展。使用电解质添加剂稳定锌金属表面是一种简单有效的方法,因此探索稳定有效的添加剂,以及解决枝晶和副反应问题的基本原理就尤为

枝晶消除剂——”新型电解质“带着电池一起飞

  太平洋西北国家实验室的物理学家Jason Zhang和他的同事们开发出一种新型电解质,使锂硫,锂金属和锂空电池的效率工作达到99%,同时具有高电流密度,且不会生长使充电电池短路的锂枝晶。  图片展示的是两幅扫描电子显微镜图像:a、说明传统的电解质如何造成枝晶生长;b、PNNL研发的新型电解质,生

研究人员研制出高室温离子电导率的光聚合凝胶电解质

  近日,我所催化基础国家重点实验室二维材料化学与能源应用研究组(508组)吴忠帅研究员团队发展了一种高室温离子电导率的光聚合凝胶准固态电解质,表现出优异室温离子电导率、宽电化学窗口和出色的柔韧性,并以此构筑出高比能、高倍率、长循环性能的钠金属电池。  钠元素具有与锂相似的特性,因其含量丰富、分布广

固态锂电池的技术优势

固态电池是公认的下一代动力电池,它或将取代液态电解质的锂离子电池。目前,包括宁德时代、比亚迪、国轩高科等企业都声称在该领域有深度的研究,只是具体情况不得而知。那么,相对于当前市场主流的锂离子电池,固态电池有着怎样的优点与缺点呢?优点1、安全性好。液态电解质易燃易爆,以及在充电过程中锂枝晶的生长容易刺

固态电池的技术优势分析

电池技术的变革,关系到能源的变革。作为公认的下一代电池技术,固态电池正在离我们越来越近。一个巨大的优势是,固态电池将比目前市场上的任何电池产品都安全有效。固态电池不仅涵盖电动工具、玩具、笔记本电脑和智能手机等普通生活领域,还将给许多特殊领域带来深远的影响,比如医疗设备、宇宙飞船和以摆脱对化石燃料的依

固态电解质委屈地哭了:导电性太高也是我的错?

  为什么要研究固态电解质  在未来可见的很长一段时间,锂金属负极都将是高能量可充电池竞相追逐的对象。目前常规的液态或者聚合物电解质很难抑制锂金属负极的枝晶生长,而固态电解质具有优异的力学强度,高Li+传递性能,可以有效抑制锂枝晶的生长。因此,固态电解质被认为是确保锂金属负极发挥威力的绝佳搭档。  

非对称凝胶电解质助力无枝晶金属锂电池研究获进展

  具有高理论比容量、低氧化还原电位的金属锂负极,有望助力下一代高能量电池的实现。然而,液态电解液体系中金属锂负极的枝晶问题饱受诟病。枝晶生长不但能够导致锂的不可逆容量损失,还可能引发电池短路乃至爆炸。科学家们对枝晶生长机理进行了广泛研究,其中得到广泛认可的Chazalviel模型指出,枝晶成核时间

新型固态电池充电只需十分钟,循环超6000次

  日前,美国哈佛大学工程与应用科学学院(SEAS)研究人员开发出了一种新的锂金属电池,它可以充电和放电至少6000次,比任何其他固态电池都多,并且可以在10分钟内完成充电。  这项发表在《自然—材料》杂志的研究成果,形成了一种用锂金属阳极制造固态电池的新方法,并为潜在的革命性电池材料提供了新思路。

新型荧光探针区分锂枝晶和“死锂”

  随着经济全球化以及科技的快速发展,人类对能源的需求日益增加,尤其是近年来电动汽车和移动电子设备的蓬勃发展,高能量密度储能材料成为科学研究的焦点。尽管传统的以石墨为负极材料的插层式锂离子电池在电子设备产品市场中占据重要地位,然而它的能量密度已经接近其上限,逐渐无法满足消费者的使用需求。与插层式的锂

固态电池是无钴电池?

早期固态电池的电解质是聚合物电解质,以PEO(聚环氧乙烷)占绝大多数,PEO的电化学稳定窗口(氧化电位)是3.8V,无法与高电压正极材料(钴酸锂、三元材料等)相容,只能用磷酸铁锂做正极,所以不用钴的说法就流传下来。

回顾:2023年Nature\Science上的锂电池成果

  2023年Nature上的电池文章汇总  1.固态电解质最新成果 登上Science  日本东京工业大学创新研究所全固态电池研究中心Ryoji Kanno教授团队利用高熵材料的特性,通过增加已知锂超离子导体的组成复杂性来设计了一种高离子导电的固态电解质,以消除离子迁移的障碍,同时保持超离子导电的

Nature-Energy之后,能源大牛再发Nature-Materials!

  背景介绍  由于更高的能量密度和安全性,带有锂金属阳极和陶瓷电解质的固态电池是当前的热点。然而在循环过程中锂枝晶通过陶瓷电解质的传播会导致高充电状态下的短路,是实现高能量密度全固态锂阳极电池的最大障碍之一。以往的研究表明,如果电解质具有足够高的剪切模量,那么通过聚合物电解质的枝晶生长就会受到抑制

什么是固态电池?

固态电池是一种电池科技。与现今普遍使用的锂离子电池和锂离子聚合物电池不同的是,固态电池是一种使用固体电极和固体电解质的电池。在固态离子学中,固态电池是一种使用固体电极和固体电解液的电池。固态电池一般功率密度较低,能量密度较高。由于固态电池的功率重量比较高,所以它是电动汽车很理想的电池 。

什么是固态电池?

固态电池是一种电池科技。与现今普遍使用的锂离子电池和锂离子聚合物电池不同的是,固态电池是一种使用固体电极和固体电解质的电池。在固态离子学中,固态电池是一种使用固体电极和固体电解液的电池。固态电池一般功率密度较低,能量密度较高。由于固态电池的功率重量比较高,所以它是电动汽车很理想的电池 。

什么是固态电池?

固态电池是一种电池科技。与现今普遍使用的锂离子电池和锂离子聚合物电池不同的是,固态电池是一种使用固体电极和固体电解质的电池。在固态离子学中,固态电池是一种使用固体电极和固体电解液的电池。固态电池一般功率密度较低,能量密度较高。由于固态电池的功率重量比较高,所以它是电动汽车很理想的电池 。

固态电池的概念

固态电池是一种电池科技,与现今普遍使用的锂离子电池和锂离子聚合物电池不同的是,固态电池是一种使用固体电极和固体电解质的电池。由于科学界认为锂离子电池已经到达极限,固态电池于近年被视为可以继承锂离子电池地位的电池,固态锂电池技术采用锂、钠制成的玻璃化合物为传导物质,取代以往锂电池的电解液,大大提升锂电

什么是固态电池?

固态电池是一种电池科技。与现今普遍使用的锂离子电池和锂离子聚合物电池不同的是,固态电池是一种使用固体电极和固体电解质的电池。在固态离子学中,固态电池是一种使用固体电极和固体电解液的电池。固态电池一般功率密度较低,能量密度较高。由于固态电池的功率重量比较高,所以它是电动汽车很理想的电池 。