研究揭示纤毛/鞭毛轴丝外周二联体微管AB管连接机制
纤毛/鞭毛是广泛存在于真核生物中的特殊细胞器,其核心结构是微管与相关蛋白组装成的轴丝复合体。轴丝外周由9组二联体微管(DMTs)构成,每个DMT由A管和B管组成。其中,A管为完全微管,由13根原纤丝环绕而成;B管为不完全微管,仅含10根原纤丝。A管与B管存在两个连接位点,分别为外侧连接点(OJ)和内侧连接点(IJ)。A管与B管的紧密连接对于维持DMTs稳定性发挥具有重要作用,若DMT-B管发生开放,将直接影响各种轴丝附属结构的附着或功能协调。因此,明确纤毛轴丝DMTs结构中,A管与B管连接的组成蛋白和调控机制,有助于学界理解轴丝结构、纤毛功能及其纤毛病发病机理。 近期,中国科学院生物物理研究所研究团队等,将基因敲除小鼠模型与原位结构生物学技术交叉融合,发现了CFAP77是介导纤毛/鞭毛轴丝外周二联体微管中A管与B管连接的核心蛋白,并系统解析了CFAP77缺失引发的分子连锁反应,即CFAP77-CCDC105-TEX43三元......阅读全文
研究揭示纤毛/鞭毛轴丝外周二联体微管AB管连接机制
纤毛/鞭毛是广泛存在于真核生物中的特殊细胞器,其核心结构是微管与相关蛋白组装成的轴丝复合体。轴丝外周由9组二联体微管(DMTs)构成,每个DMT由A管和B管组成。其中,A管为完全微管,由13根原纤丝环绕而成;B管为不完全微管,仅含10根原纤丝。A管与B管存在两个连接位点,分别为外侧连接点(OJ)
鞭毛纲和纤毛纲的主要区别
没有区别鞭毛flagellum从一些原核细胞和真核细胞表面伸出的、能运动的突起。鞭毛较长,数目少;纤毛与鞭毛有相同的结构,但较短,数目多。细菌的鞭毛则有完全不同的结构。鞭毛一般长约150微米,纤毛5~10微米,两者直径相近,为0.15~0.3微米。大多数动物和植物的精子都有鞭毛。精子及许多原生动物都
最新研究揭示氧化还原信号调控多纤毛协调性摆动
纤毛(也称鞭毛)作为一种真核生物突出在细胞表面的保守细胞器,可以行使感受、分泌和运动等功能。生殖细胞精子的单根鞭毛和原生生物如衣藻的双根鞭毛可以通过摆动产生的动力来推动细胞体的定向游动。分布在人体呼吸道、输卵管和脑室细胞表面成簇的多纤毛可通过协调性的摆动推动细胞表面的液体定向流动,从而分别完成粘
动力蛋白的功能简介
轴丝动力蛋白可以使纤毛和鞭毛滑动,轴丝动力蛋白只在有纤毛和鞭毛结构的细胞中发现。而细胞质动力蛋白则在所有的动物细胞和绝大部分植物细胞中发现。细胞质动力蛋白履行细胞生存所必须的职能,如物质运输和中心体装配。细胞质动力蛋白可以沿着微管进行性移动,即动力蛋白其中一个杆总是链结在微管上,依靠这种方式,细
细胞生理活动的观察实验_细胞的纤毛和鞭毛
实验方法原理暗视野照明法是一种不使照射被检物体的光线直接进入物镜的照明方法。常常用它来观察没有染色的活体细胞或胶体粒子。利用此照明法,在镜检时不能直接看到通过标本的照明光线,只有被检物体反射或衍射的光线进入物镜可以提高分辨率,在暗视野中可以看到明亮的被检物体的存在和运动,但它们的内部结构却看不清楚。
生物物理所揭示小鼠精子轴丝双联微管的原位精细结构
轴丝是生物体中纤毛的基础结构,在细胞运动、细胞间通讯、感觉接收和胚胎发育等重要生命活动中具有关键作用。在运动纤毛中,轴丝由中央对复合体(CPC)和周围的9组双联微管(DMT)组成,通过径向辐条(RS)、外动力蛋白(ODA)和内动力蛋白(IDA)等组分相互连接,形成典型的"9+2"结构。轴丝各组分
关乎男性生育——微管蛋白甘氨酸化与“小蝌蚪”迷路
Science | 小修饰,大作用: 微管是细胞骨架中的重要组分,其结构与组成在大多数的细胞种类以及组织中都是高度类似的。微管中富含多种多样的翻译后修饰以对应其不同的功能,这些丰富的表观遗传修饰又被成为“微管蛋白密码(Tubulin code)”【1】。但是目前对于微管蛋白密码清晰的功能以及机
关于小儿原发性纤毛运动障碍的病因分析
1.先天性异常 原发性纤毛不动综合征、囊性纤维性变、Young综合征、纤毛长度异常、纤毛缺如、动力短臂短缺、全部或部分缺如、放射轮轴缺陷和微管异位等。 2.后天获得性 局部异常多为继发性。慢性气管炎、肺炎、支气管扩张、哮喘和肺癌可引起纤毛大小不等、巨大纤毛;慢性鼻窦炎、哮喘可引
鞭毛的运动机制的介绍
纤毛和鞭毛由3个主要部分组成:中央轴纤丝、围绕它的质膜和一些细胞质。轴纤丝从纤毛或鞭毛底部的基粒直达顶端,为一束直径约220~240埃的微管,在基粒底部,则集聚成圆锥形束,深入到细胞质中。 轴纤丝横切面的微管排列是9+2式,即中心有一对由中央鞘包裹着的微管,外围环绕以两两连接在一起的9组微管二
细菌鞭毛的运动机制
纤毛和鞭毛由3个主要部分组成:中央轴纤丝、围绕它的质膜和一些细胞质。轴纤丝从纤毛或鞭毛底部的基粒直达顶端,为一束直径约220~240埃的微管,在基粒底部,则集聚成圆锥形束,深入到细胞质中。轴纤丝横切面的微管排列是9+2式,即中心有一对由中央鞘包裹着的微管,外围环绕以两两连接在一起的9组微管二联体。基
细菌鞭毛的运动机制
纤毛和鞭毛由3个主要部分组成:中央轴纤丝、围绕它的质膜和一些细胞质。轴纤丝从纤毛或鞭毛底部的基粒直达顶端,为一束直径约220~240埃的微管,在基粒底部,则集聚成圆锥形束,深入到细胞质中。轴纤丝横切面的微管排列是9+2式,即中心有一对由中央鞘包裹着的微管,外围环绕以两两连接在一起的9组微管二联体。基
纤毛长度调控潜在机理:马达蛋白磷酸介导化鞭毛内运输
论文揭示了纤毛长度调控和组装是通过纤毛长度反馈调节“鞭毛内运输”(Intraflagellar Transport)的马达蛋白磷酸化而介导的。这是关于纤毛长度和组装机制研究的重要进展,揭示了纤毛长度调控的潜在机理。 纤毛长度调控模型 2018年7月26日,清华大学生命科学学院潘俊敏教授研究组
清华大学潘俊敏教授Cell子刊发表研究新成果
来自清华大学的研究人员在新研究中证实,FLA8/KIF3B磷酸化通过调控Kinesin-II与IFT-B互作控制了细胞纤毛内转运蛋白(Intraflagellar transport,IFT)的进入和转向。这一研究发现发表在8月28日的《发育细胞》(Developmental Cell)杂志上。
“纤毛病”或与一种肿瘤抑制蛋白有关
多趾、不育、肥胖症、视网膜变性、多囊肾、肿瘤……这些看似毫不相关的疾病已被科学界证实,均与人体细胞上一种叫做“纤毛”的结构发生异常密切相关。 南开大学药物化学生物学国家重点实验室周军教授领衔的“细胞骨架与疾病”课题组发现了纤毛发生的新机制:在细胞纤毛形成过程中一种名为“CYLD”的肿瘤抑制蛋白
美研究人员深入解析纤毛双管结构
近日,美国华盛顿大学路易斯分校等科研机构的科研人员在Cell上发表了题为“Structure of the Decorated Ciliary Doublet Microtubule”的文章,深入解析了纤毛双管结构。 运动纤毛轴丝是真核细胞中最大的大分子结构。人类轴丝功能受损会导致一系列的纤毛
纤毛——细胞的小雷达
“纤毛疾病”是由编码纤毛-中心体复合体相关蛋白的基因突变所导致的一组疾病,这些疾病可以表现为多囊肾、失明、智力迟滞以及肥胖、糖尿病等。在这篇NEJM的文章Ciliopathies中,作者F. Hildebrandt等人向我们介绍了编码纤毛的基因突变以及下游信号转导通路异常在这些疾病的发生中所起的
什么是微管?
微管 (microtubule)可在所有哺乳类 动物细胞中存在,直径大于12nm,除了红细胞 ( 红血球 )外,所有微管均由约55kD的α及β 微管蛋白 (tubulin)组成。它们 细胞骨架正常时以(αβ)二聚体形式存在,并以头尾相连的方式聚合,形成微管蛋白原纤维 (protofilament),
西湖大学团队Cell发文,治疗男性不育症有新思路
生命起源于一颗受精卵。精子“翻山越岭”遇见卵子的能力,是生命发生的必要条件。如果精子的运动能力出现异常,自然受孕的成功率便会大大降低;当精液中精子向前运动的比例低于32%时,则被定义为“弱精症(asthenozoospermia)”。这是目前男性不育的常见病因。北京时间2023年6月8日,西湖大学生
清华欧光朔JCB发表CRISPR研究成果
近期,清华大学欧光朔研究组在《细胞生物学杂志》(Journal of Cell Biology)上在线发表题为“Somatic CRISPR–Cas9-induced mutations reveal roles of embryonically essential dynein chains
细菌的运动
运动型细菌可以依靠鞭毛,细菌滑行或改变浮力来四处移动。另一类细菌,螺旋体,具有一些类似鞭毛的结构,称为轴丝,连接周质的两细胞膜。当他们移动时,身体呈现扭曲的螺旋型。螺旋菌则不具轴丝,但其具有鞭毛。细菌鞭毛以不同方式排布。细菌一端可以有单独的极鞭毛,或者一丛鞭毛。周毛菌表面具有分散的鞭毛。运动型细菌可
细菌运动的方式
细菌的运动方式:运动型细菌可以依靠鞭毛,细菌滑行或改变浮力来四处移动。另一类细菌,螺旋体,具有一些类似鞭毛的结构,称为轴丝,连接周质的两细胞膜。当他们移动时,身体呈现扭曲的螺旋型。螺旋菌则不具轴丝,但其具有鞭毛。细菌鞭毛以不同方式排布。细菌一端可以有单独的极鞭毛,或者一丛鞭毛。周毛菌表面具有分散的鞭
细菌的运动方式
细菌的运动方式:运动型细菌可以依靠鞭毛,细菌滑行或改变浮力来四处移动。另一类细菌,螺旋体,具有一些类似鞭毛的结构,称为轴丝,连接周质的两细胞膜。当他们移动时,身体呈现扭曲的螺旋型。螺旋菌则不具轴丝,但其具有鞭毛。医学|教育|网搜集整理细菌鞭毛以不同方式排布。细菌一端可以有单独的极鞭毛,或者一丛鞭毛。
研究揭示哺乳动物精子轴丝中央微管原位结构及其引发弱精症的分子机制
弱精症是男性不育最常见的原因之一,表现为精子运动能力缺陷。精子鞭毛具有标志性的“9+2”轴丝结构,由9组微管二联体围绕中央微管(CA)组成,通过动力蛋白臂引起轴丝微管相互之间滑动,促使精子鞭毛摆动,进而产生精子游动。目前,哺乳动物精子鞭毛轴丝中央微管的精细结构和功能机制仍不清楚,制约了对弱精症发病分
不动纤毛综合症的病因
不动纤毛综合症为常染色体隐性遗传。现已证实纤毛轴丝含有100多种多肽,任何1种多肽有缺陷,均可造成同样的病理结果。因此具有明显的遗传异质性。有纤毛蛋白臂部分或完全缺失(单纯外侧或内侧纤毛蛋白臂缺失、或双侧均缺失),有放射辐缺陷者,有中央鞘缺失。也有临床症状典型而纤毛超微结构正常者。其中以纤毛蛋白
关于细胞骨架—微管的基本信息介绍
微管(microtubule)可在所有哺乳类动物细胞中存在,直径大于12nm,除了红细胞(红血球)外,所有微管均由约55kD的α及β微管蛋白(tubulin)组成。它们正常时以(αβ)二聚体形式存在,并以头尾相连的方式聚合,形成微管蛋白原纤维(protofilament),一般由13根这样的原纤
概述Usher综合症的病理
颞骨病理:1975年Belal在一例USⅢ型颞骨尸检发现耳蜗基底转血管纹萎缩,基底转15 mm以内毛细胞完全变性,其对应区域内螺旋神经节明显减少甚至完全缺失,球囊斑、椭圆囊斑、壶腹嵴细胞明显减少,盖膜正常。1984年Shinkawa和Nadol在一例USⅢ型颞骨尸检亦发现基底转毛细胞变性,螺旋神
不动纤毛综合症的病因及发病机制
病因 不动纤毛综合症为常染色体隐性遗传。现已证实纤毛轴丝含有100多种多肽,任何1种多肽有缺陷,均可造成同样的病理结果。因此具有明显的遗传异质性。有纤毛蛋白臂部分或完全缺失(单纯外侧或内侧纤毛蛋白臂缺失、或双侧均缺失),有放射辐缺陷者,有中央鞘缺失。也有临床症状典型而纤毛超微结构正常者。其中以
国际联合研究绘制出首个人类纤毛跳动分子机制图
由英国、美国、荷兰、中国和埃及科研人员组成的国际合作团队,在《自然》杂志上发表研究结果,揭示人类纤毛结构的详细分子图谱。 该研究结合了先进的显微镜和人工智能技术,首次将促进纤毛跳动的分子“纳米机制”可视化,可见沿纤毛长度每96纳米点缀着相同的结构,这些结构聚集在一起形成轴丝。在健康的气道中,这
螺旋体的简介
螺旋体(Spirochaeta)细长、柔软、弯曲呈螺旋状的运动活泼的单细胞原核生物。全长3~500微米,具有细菌细胞的所有内部结构。由核区和细胞质构成原生质圆柱体,柱体外缠绕着一根或多根轴丝。轴丝的一端附着在原生质圆柱体近末端的盘状物上,原生质圆柱体和轴丝都包以外包被,轴丝相互交叠并向非固着端伸
螺旋体的简介
螺旋体(Spirochaeta)细长、柔软、弯曲呈螺旋状的运动活泼的单细胞原核生物。全长3~500微米,具有细菌细胞的所有内部结构。由核区和细胞质构成原生质圆柱体,柱体外缠绕着一根或多根轴丝。轴丝的一端附着在原生质圆柱体近末端的盘状物上,原生质圆柱体和轴丝都包以外包被,轴丝相互交叠并向非固着端伸