我国学者在氮手性领域研究取得进展

在国家自然科学基金(批准号:22425011、22231004、22271135)资助下,南方科技大学谭斌团队在氮手性领域研究取得进展,相关成果以“不对称有机催化控制三角锥形氮中心手性(Controlling pyramidal nitrogen chirality by asymmetric organocatalysis)”为题,2025年11月12日在线发表于《自然》(Nature)期刊,论文链接:https://www.nature.com/articles/s41586-025-09607-6。 手性在自然界中广泛存在,与人类生命及日常生活密切相关。发展手性物质的不对称合成方法是合成化学领域的核心挑战与前沿方向,不仅具有重要的学术意义,也展现出广阔的应用前景。然而,长期以来,不对称合成的研究主要集中于构型稳定的碳手性中心,其他杂原子手性中心的研究则主要局限于硫、磷和硅等原子。氮元素作为生命体系中的重要组成元素,在......阅读全文

手性色谱柱——刷型

   刷型手性色谱柱的出现和发展源于Bill Prikle及其同事的卓越工作。六十年代,Bill Prikle将手性核磁共振中的成果运用到手性HPLC固定相研究中,通过不断实践,发明了应用范围较广、柱效很好的手性色谱柱。   刷型手性色谱柱是根据三点识别模式设计的,属于Irving Wainer分类

手性分子的识别有哪些?

手性识别与分离的技术发展迅速,其中色谱法、传感器法和光谱法等具有适用性好、应用范围广、灵敏度高、检测速度快等优点,在分离识别和纯化手性化合物中受到研究者的极大关注。

手性色谱柱——冠醚型

   冠醚类固定相用于分离一级胺,一级胺必须质子化方能达到分离。因此必须使用酸性流动相,如高氯酸。最常用的是冠醚类固定相是18-冠-6,已有商品化产品,由Daicel公司制造。无论(+)或(-)型均可达到有效分离,并可通过变化(+)(-)类型而改变分析物出峰顺序。冠醚作为添加剂也用于核磁共振和电泳,

手性物质是怎么回事

手性分子,是化学中结构上镜像对称而又不能完全重合的分子。碳原子在形成有机分子的时候,4个原子或基团可以通过4根共价键形成三维的空间结构。由于相连的原子或基团不同,它会形成两种分子结构。这两种分子物理性质相同,化学性质却可能有很大差异,两者之间在药力、毒性等方面往往存在差别,有的甚至作用相反。从分子的

JASCO荣获2007“分子手性奖”

     [2007年6月28日 JASCO, Inc.] 分子手性研究机构于5月15-16日在日本东京理工大学举行了年度分子手性研讨会。该组织从1999年起设立“分子手性奖”,该奖项用于奖励在分子手性领域作出杰出贡献的科学家和公司。今年的分子手性奖分别授予了大阪城市大学的Hiroshi Tsuku

手性色谱柱知识介绍

手性色谱柱(Chiral HPLC  Columns)是由具有光学活性的单体,固定在硅胶或其它聚合物上制成手性固定相(Chiral Stationary  Phases)。通过引入手性环境使对映异构体间呈现物理特征的差异,从而达到光学异构体拆分的目的。要实现手性识别,手性化合物分子与手性固定相之间至

光谱法鉴别手性分子

采用紫外光谱、荧光光谱、红外光谱和圆二色光谱等考察手性选择剂和手性底物的混合溶液在光谱上的细微变化,辅助以化学计量学分析或其他光谱联用也可用于手性识别研究。

手性物质是怎么回事

手性分子,是化学中结构上镜像对称而又不能完全重合的分子。碳原子在形成有机分子的时候,4个原子或基团可以通过4根共价键形成三维的空间结构。由于相连的原子或基团不同,它会形成两种分子结构。这两种分子物理性质相同,化学性质却可能有很大差异,两者之间在药力、毒性等方面往往存在差别,有的甚至作用相反。从分子的

手性色谱柱的知识

手性色谱柱(Chiral HPLC Columns)是由具有光学活性的单体,固定在硅胶或其它聚合物上制成手性固定相(Chiral Stationary Phases)。通过引入手性环境使对映异构体间呈现物理特征的差异,从而达到光学异构体拆分的目的。要实现手性识别,手性化合物分子与手性固定相之间至少存

手性高效液相色谱法

手性高效液相色谱法分为直接法和间接法。对映体(enantiomer):在空间上不能重叠,互为镜像关系的立体异构体。立体异构体指分子中的结构基团在空间三维排列不同的化合物。手性药物(chiral,drug):含有手性中心的药物。手性中心即为化合物中某个碳原子上连接4个互不相同的基团时,称该碳原子被称为

手性色谱柱知识介绍

   手性色谱柱(Chiral HPLC Columns)是由具有光学活性的单体,固定在硅胶或其它聚合物上制成手性固定相(Chiral Stationary Phases)。通过引入手性环境使对映异构体间呈现物理特征的差异,从而达到光学异构体拆分的目的。要实现手性识别,手性化合物分子与手性固定相之间

色谱法鉴别手性分子

色谱法可满足各种条件下对映体拆分和测定的要求,能够快速对手性样品进行定性、定量分析和制备拆分。目前,高效液相色谱、气相色谱、超临界流体色谱、模拟移动床色谱和毛细管电泳等在手性研究中得到了广泛应用。其 中,高效液相色谱法(HPLC)进行手性药物对映体的光学拆分已成为药学研究中的一大热点,开发一些新型、

手性物质的分离分析方法

      手性物质的分离分析方法有手性源合成法、结晶拆分法、化学拆分法、酶拆分法、膜拆分法、萃取拆分法和色谱拆分法等,常与离心机分离技术结合使用。1、手性源合成法:        手性源合成法是以单一对映体的手性化合物为原料合成另外的手性化合物的单一对映体,这是化学家常用的方法。        由

手性色谱柱知识(二)

环糊精型:环糊精是通过Bacillus Macerans 淀粉酶或环糊精糖基转移酶水解淀粉得到的环型低聚糖。通过控制环糊精转移酶的水解反应条件可得到不同尺寸的环糊精。市售的环糊精主要是α、β、γ三种类型,分别含6、7、8个吡喃葡萄糖单元。环糊精分子成锥筒型,构成一个洞穴,洞穴的孔径由构成环糊精的

手性色谱柱知识(一)

手性色谱柱(Chiral HPLC Columns)是由具有光学活性的单体,固定在硅胶或其它聚合物上制成手性固定相(Chiral Stationary Phases)。通过引入手性环境使对映异构体间呈现物理特征的差异,从而达到光学异构体拆分的目的。要实现手性识别,手性化合物分子与手性固定相之

手性世界拆分的创新之路

手性一词来源于希腊语“手”(Cheiro)。自然界中存在的手性物质是指具有一定构型或构象的物质与其镜像物质不能互相重合,就象左手和右手互为不能重合的实物和镜象关系类似。手性是宇宙间的普遍特征,体现在生命的产生和演变过程中。首先组成地球生命体的基本结构单元,氨基酸几乎都是左旋氨基酸,而没有右旋氨基酸。

手性分子的基本概念

在偏振光发现之后,人们很快认识到某些物质能使偏振光的偏振面发生偏转,产生旋光现象。1848年法国巴黎师范大学年轻的化学家Pastenr细心研究了酒石酸钠铵的晶体及水溶液的旋光现象,从而得出物质的旋光性与分子内部结构有关,提出了对映异构体的概念。人们在研究对映异构体时,由左旋和右旋两种对映异构体的分子

什么是手性化合物

手性化合物是指分子量、分子结构相同,但左右排列相反,如实物与其镜中的映体。人的左右手、结构相同,大姆至小指的次序也相同,但顺序不同,左手是由左向右,右手则是由右向左,所以叫做“手性”。也就是指一对分子。由于它们像人的两只手一样彼此不能重合,又称为手性化合物手性当我们伸出双手,双手手心向上时,可以看出

手性高效液相色谱法

手性高效液相色谱法分为直接法和间接法。对映体(enantiomer):在空间上不能重叠,互为镜像关系的立体异构体。立体异构体指分子中的结构基团在空间三维排列不同的化合物。手性药物(chiral,drug):含有手性中心的药物。手性中心即为化合物中某个碳原子上连接4个互不相同的基团时,称该碳原子被称为

广州地化所手性化合物手性选择性代谢机制研究取得进展

  手性是自然界普遍存在的一种分子不对称现象。拥有相同分子量、分子结构的不同手性异构体在生物体内往往表现出截然不同的生理活性和毒性。因此,手性也是生命科学领域重要的研究问题。环境污染物中存在着多种手性化合物,了解不同手性异构体在生物体内的差异性富集、代谢是正确认识和评价相关手性污染物生态风险的基础。

新策略制备抗抑郁药物

  日前,南京工业大学柔性电子(未来技术)学院教授付振乾团队与郑州大学教授化学学院魏东辉团队合作,探索手性催化新模式,利用氮杂环卡宾(氮杂环卡宾是一种手性催化剂)对内酰亚胺类底物的活化去对称化,成功实现了单一手性中心的精准构建。该策略得到的产物可简洁高效转化为抗抑郁药物R构型的咯利普兰,展示了该策略

大连化物所手性催化研究获进展

  近日,中国科学院大连化学物理研究所催化基础国家重点实验室分子催化与原位表征研究组李灿、刘龑团队在手性催化研究方面取得新进展,完成了高反应活性和对映选择性底物控制的基于邻位亚甲基醌(o-QMs)中间体的动态动力学拆分和4+2环加成反应。相关研究成果发表在《德国应用化学》(Angew. Chem.

手性有机合成的研究进展

 手性化合物的不同立体异构体通常具有不同的性质,特别是不同的生物活性。所以,得到正确的立体对映异构体对于合成手性药物非常重要。我们在手性分子的立体选择性合成方面已经取得了很大进步,但仍然缺少高效的方法,为此,我们需要研发新的手性催化剂和不对称反应。手性有机金属催化剂是研究的重点,它包括金属原子和手性

手性色谱柱使用前需知

shodex手性色谱柱具有柱效高、载样量大、柱寿命长、可在正相、极性有机和SFC模式下分离范围广泛的多种手性化合物等特点,有分析柱和制备柱可供选择。相似固定相: CHIRALCEL® OD-H 等,与其它的DMPC-纤维素色谱柱即纤维素-三-(3,5-二甲基苯基氨基甲酸酯)色谱柱相比具有相同甚至

手性有机酸催化炔烃

  在国家自然科学基金项目(批准号:92056104、21772161、21702182和21873081)的资助下,厦门大学叶龙武教授与浙江大学洪鑫研究员合作,在炔烃的手性有机酸催化方面取得重要进展。研究成果以“通过直接活化炔酰胺的手性布朗斯特酸催化不对称去芳构化反应(Asymmetric dea

手性色谱柱的分类介绍

手性色谱柱(Chiral HPLC Columns)是由具有光学活性的单体,固定在硅胶或其它聚合物上制成手性固定相(Chiral Stationary Phases)。通过引入手性环境使对映异构体间呈现物理特征的差异,从而达到光学异构体拆分的目的。要实现手性识别,手性化合物分子与手性固定相之

手性技术的研究和发展情况

手性技术是建立在科学基础之上的。因此,手性技术的发展首先应该是有关基础的发展。这些基础首先是有机立体化学理论的建立,其次是消旋体拆分方法的完善,第三是手性合成的创新,另外还有其他一些相关的研究。消旋体的拆分,是手性技术的一个重要方面。在由非手性物质合成手性物质时,往往得到的是由一对等量对映异构体组成

新型手性费米子研究取得进展

凝聚态物理中,如果包围能带简并点的费米面具有非零的陈数,则该简并点具有手性,在该费米面上的低能准粒子激发可以被看成是手性费米子。2019初,中国科学院物理研究所/北京凝聚态物理国家研究中心与中国人民大学物理系合作,利用角分辨光电子能谱证实了在CoSi这个手性晶体中,存在新型手性的spin-1和cha

手性技术的研究与发展情况

手性技术是建立在科学基础之上的。因此,手性技术的发展首先应该是有关基础的发展。这些基础首先是有机立体化学理论的建立,其次是消旋体拆分方法的完善,第三是手性合成的创新,另外还有其他一些相关的研究。消旋体的拆分,是手性技术的一个重要方面。在由非手性物质合成手性物质时,往往得到的是由一对等量对映异构体组成

手性对生命体的意义

作为生命的基本结构单元,氨基酸也有手性之分。也就是说,生命最基本的东西也有左右之分。组成地球生命体的几乎都是左旋氨基酸,而没有右旋氨基酸我们已经发现的氨基酸有20多个种类,除了最简单的甘氨酸以外,其它氨基酸都有另一种手性对映体。那么,是不是所有的氨基酸都是手性的呢?答案是肯定的,检验手性的最好方法就