手性高效液相色谱法

手性高效液相色谱法分为直接法和间接法。对映体(enantiomer):在空间上不能重叠,互为镜像关系的立体异构体。立体异构体指分子中的结构基团在空间三维排列不同的化合物。手性药物(chiral,drug):含有手性中心的药物。手性中心即为化合物中某个碳原子上连接4个互不相同的基团时,称该碳原子被称为手性中心。手性药物拆分方法与机制:拆分基础:创造手性环境和构造非对映异构体。拆分原理:基于把对映体的混合物转变成非对映异构体,再利用它们在物理化学或化学性质上的差异使之分开。手性离子对色谱法:一类分离可解离对映体的离子对色谱法,已成功分离了β-氨基醇类、氨基醇类、胺类等对映体化合物。有机酸或碱能与离子对试剂在流动相中反应生成低极性不解离的“离子对”,但反相离子对色谱很少用于手性药物分离,而正相离子对色谱广泛用于药物对映体的分离。基本原理:在HPLC流动相中加入光学纯反离子可与流动相中的对映体生成非对映体复合物,离子对复合物之间具有不同......阅读全文

手性高效液相色谱法

手性高效液相色谱法分为直接法和间接法。对映体(enantiomer):在空间上不能重叠,互为镜像关系的立体异构体。立体异构体指分子中的结构基团在空间三维排列不同的化合物。手性药物(chiral,drug):含有手性中心的药物。手性中心即为化合物中某个碳原子上连接4个互不相同的基团时,称该碳原子被称为

手性高效液相色谱法

手性高效液相色谱法分为直接法和间接法。对映体(enantiomer):在空间上不能重叠,互为镜像关系的立体异构体。立体异构体指分子中的结构基团在空间三维排列不同的化合物。手性药物(chiral,drug):含有手性中心的药物。手性中心即为化合物中某个碳原子上连接4个互不相同的基团时,称该碳原子被称为

高效液相色谱的手性拆分原理

气相色谱定量分析原理气相色谱法是一种分离分析方法。操作时使用气相色谱仪,被分析样品(气体或液体汽化后的蒸汽)在流速保持一定的惰性气体(成为载气或流动相)的带动下进入填充有固定相的色谱柱,在色谱柱中样品被分离成一个个的单一组分,并以一定的先后次序从色谱柱流出,进入检测器,转变成电信号,再经放大后,由记

高效液相色谱的手性拆分原理

气相色谱定量分析原理气相色谱法是一种分离分析方法。操作时使用气相色谱仪,被分析样品(气体或液体汽化后的蒸汽)在流速保持一定的惰性气体(成为载气或流动相)的带动下进入填充有固定相的色谱柱,在色谱柱中样品被分离成一个个的单一组分,并以一定的先后次序从色谱柱流出,进入检测器,转变成电信号,再经放大后,由记

新型“分手”利器可高效分离手性分子

生物分子COF 1作为手性固定相用于手性拆分(南开大学供图)   化学界中,有一大类分子存在手性异构体,它们就像左右手,虽然看上去一模一样,但完全不能重叠,这类分子被称为“手性分子”。  一些药物中的手性分子在生物活性、代谢过程和毒性等方面存在显著差别,有的差异甚至如“治病”和“致病”这样,是天壤之

高效液相色谱的手性拆分原理有哪些

气相色谱定量分析原理气相色谱法是一种分离分析方法。操作时使用气相色谱仪,被分析样品(气体或液体汽化后的蒸汽)在流速保持一定的惰性气体(成为载气或流动相)的带动下进入填充有固定相的色谱柱,在色谱柱中样品被分离成一个个的单一组分,并以一定的先后次序从色谱柱流出,进入检测器,转变成电信号,再经放大后,由记

手性联芳基类天然产物的高效合成取得新进展

  手性联芳基类天然产物在自然界中存在很多,而且富有生理活性。例如,科鲁普钩枝藤碱A (Korupensamine A)和它的轴手性异构体科鲁普钩枝藤碱B (Korupensamine B)均表现出很显著的抗疟性,而它们的二聚体米歇尔胺B (Michellamine B) 则对HIV-1和H

手性的概念及手性物质分离的意义

一、手性及对映异构体的定义:物体与其镜像不能重叠的现象称为手性。 两种互为镜像关系且不能重叠的分子称为手性分子,又称对映异构体。二、手性分子的特点:手性分子的结构差别很小,具有相同的熔点、沸点、偶极矩、折光率和光谱性质等,与非手性试剂作用时,其化学性质一样,很难用一般的物理或化学方法区分。但它们对平

手性传感器识别法鉴别手性分子

手性传感器识别法具有简单快捷、高效灵敏和选择性高的特点。电化学传感器主要通过主体选择性键合客体分子引起传感器的电信号变化而实现手性识别;荧光传感器基于对映体分子和手性选择剂形成缔合物的荧光差异来实现识别。在压电传感器中,手性选择膜镀在石英晶体上,当手性分子与手性膜发生作用时,会引起石英晶体的质量和振

手性的概念及手性物质分离的意义

一、手性及对映异构体的定义:        物体与其镜像不能重叠的现象称为手性。          两种互为镜像关系且不能重叠的分子称为手性分子,又称对映异构体。二、手性分子的特点:        手性分子的结构差别很小,具有相同的熔点、沸点、偶极矩、折光率和光谱性质等,与非手性试剂作用时,其化学性

新成果助力手性胺类和醚类化合物高效合成

《中国科学报》记者从武汉大学获悉,该校化学与分子科学学院陈才友教授的研究成果“铜催化氧亲核试剂的立体汇聚烷基化”日前在《自然》在线发表。C-O键广泛地存在于包括药物、生物活性分子和材料分子等有机化合物中,因而C-O键的高效构建在有机合成中极为重要。在药物合成中,杂原子的烷/芳基化是使用率最高的反应,

上海有机所在手性药物的高效合成中取得新进展

  手性β-芳基胺结构广泛存在于药物分子和具有重要生理功能的天然产物中。例如,前列腺增生治疗药西洛多辛(Silodosin)和坦索罗辛(Tamsulosin),慢性阻塞性肺炎治疗药福莫特罗(Arformoterol),帕金森症治疗药物罗替戈汀(Rotigotine)和具有抗 HIV活性的科鲁普钩

新成果助力手性胺类和醚类化合物高效合成

原文地址:http://news.sciencenet.cn/htmlnews/2023/4/497769.shtm《中国科学报》记者从武汉大学获悉,该校化学与分子科学学院陈才友教授的研究成果“铜催化氧亲核试剂的立体汇聚烷基化”日前在《自然》在线发表。   ?Cu/噁唑啉催化的立体汇聚C-O

新型对映汇聚式还原加成反应可高效构建多种相邻手性中心

华东理工大学教授陈宜峰团队联合天津大学教授黄根平团队,开发了一种外消旋烷基卤代物与亚胺的对映汇聚式还原加成反应,可高效构建多种连续手性中心,且反应条件温和,具有优异的非对映选择性和对映选择性以及广泛的官能团兼容性,为合成不同重要手性结构单元提供了新路径。相关研究近日发表于《自然-化学》。手性C(sp

手性α季碳氨基酸衍生物高效合成研究新进展

原文地址:http://news.sciencenet.cn/htmlnews/2023/12/514550.shtm近日,华东理工大学化学与分子工程学院、费林加诺贝尔奖科学家联合研究中心陈宜峰教授课题组在手性α-季碳氨基酸衍生物高效合成研究中取得新进展。相关成果以“钴催化的不对称氮杂-巴比耶反应模

新策略可高效合成N–N轴手性抗肿瘤活性化合物

  华东理工大学化学与分子工程学院特聘研究员李星光等人,为构建结构新颖的N–N轴手性化合物提供了新策略,也为发展新型抗肿瘤活性分子开辟了新途径,对推动药物化学、材料科学等领域的发展具有重要价值。相关研究近日发表于《自然—通讯》。  N–N轴手性化合物是一类重要的手性分子,广泛存在于天然产物、生物活性

手性的概念

手性一词指一个物体不能与其镜像相重合。如我们的双手,左手与互成镜像的右手不重合。手性一词在化学医药领域运用更加普遍,一个手性分子与其镜像不重合,分子的手性通常是由不对称碳引起,即一个碳上的四个基团互不相同。通常用(RS)、(DL)对其进行识别。手性现象在自然界中也广泛存在。手性是自然界的基本属性。

手性分离色谱

是采用色谱技术(TLC、GC和HPLC)分离测定光学异构体药物的有效方法。由于许多药物的对映体(Enantiomer)之间在药理、毒理乃至临床性质方面存在着较大差异,有必要对某些手性药物进行对映体的纯度检查。(一)原理和方法:对映体化合物之间除了对偏振光的偏转方向恰好相反外,其理化性质是完全相同的,

基于环二核苷酸组装高效人工RNA金属酶的手性催化

  DNA和RNA是生命体遗传信息的载体,它们具有天然的空间结构。近年来,双螺旋DNA和G-四链体DNA被用作手性骨架和金属物种组装成人工DNA金属酶成功实现水相中的不对称催化。由于RNA结构的不稳定性,关于人工RNA金属酶的手性催化研究却寥寥无几。近日,陕西师范大学王长号副教授、陈亚芍教授和德国康

手性高效液相色谱测定有机化合物光学纯度的原理

采用手性固定相或添加了手性试剂的流动相进行手性异构体(对映体)分离的色谱技术。液相色谱和气相色谱都可以进行手性异构体分离。它利用手性固定相或手性流动相中的手性试剂与被测手性异构体分子的空间和特异相互作用的差异,将对映体拆分开。手性色谱在生物和医药领域具有重要应用手性药物编辑化合物中某个碳原子上连接4

手性的结构特点

手性广泛的存在于自然界中,在多种学科中表示一种重要的对称特点。如果某物体与其镜像不同,则其被称为“手性的”,且其镜像是不能与原物体重合的,就如同左手和右手互为镜像而无法叠合。手性物体与其镜像被称为对映体(enantiomorph,希腊语意为“相对/相反形式”);在有关分子概念的引用中也被称为对映异构

什么是手性分子?

手性分子是指与其镜像不相同不能互相重合的具有一定构型或构象的分子。手性一词来源于希腊语“手”(Cheiro),由Cahn等提出用“手性”表达旋光性分子和其镜影不能相叠的立体形象的关系。手性等于左右手的关系,彼此不能互相重合。所有的手性分子都具有光学活性,同时所有具有光学活性的化合物的分子,都是手性分

手性分子的应用

获得手性分子的重要意义一 药物与人类的关系:构成生命体系的生物大分子大多数是以一种对映体形式存在的。故药物与其作用也是以手性的方式进行的,生物体的酶和细胞表面受体是手性的,故对外消旋药物的识别、消化和降解过程也是不同的。手性分子的来源自然界:糖类、氨基酸、生物破、萜类、 甾体化合物不对称有机合成反应

什么是手性分子?

手性分子是指与其镜像不相同不能互相重合的具有一定构型或构象的分子。手性一词来源于希腊语“手”(Cheiro),由Cahn等提出用“手性”表达旋光性分子和其镜影不能相叠的立体形象的关系。手性等于左右手的关系,彼此不能互相重合。所有的手性分子都具有光学活性,同时所有具有光学活性的化合物的分子,都是手性分

沃特世推出全新手性和非手性分离色谱柱

  沃特世推出全新手性和非手性分离色谱柱,扩展了ACQUITY UPC2产品组合   隆重推出ACQUITY UPC2 Trefoil和Torus技术色谱   瑞士巴塞尔——(美国商业资讯)——2014年10月8日——沃特世公司(纽约证券交易所代码:WAT)今日隆重推出了适用于手性和非手性分离

首次实现二维手性超晶格无标记SERS手性识别

  松山湖材料实验室研究员梁齐杰/邹超团队与合作者,首次利用二维TaS2手性超晶格,成功实现了对生物重要手性对的无标记、直接表面增强拉曼散射(SERS)指纹鉴别,为手性分析领域带来了新的曙光。相关成果近日发表于《纳米快报》(Nano Letters)。  在药物合成、临床诊断和生物制造等诸多领域,精

首次实现二维手性超晶格无标记SERS手性识别

松山湖材料实验室研究员梁齐杰/邹超团队与合作者,首次利用二维TaS2手性超晶格,成功实现了对生物重要手性对的无标记、直接表面增强拉曼散射(SERS)指纹鉴别,为手性分析领域带来了新的曙光。相关成果近日发表于《纳米快报》(Nano Letters)。在药物合成、临床诊断和生物制造等诸多领域,精准区分手

手性色谱柱介绍

手性色谱柱是由具有光学活性的单体,固定在硅胶或其它聚合物上制成手性固定相(Chiral Stationary Phases)。通过引入手性环境使对映异构体间呈现物理特征的差异,从而达到光学异构体拆分的目的。要实现手性识别,手性化合物分子与手性固定相之间至少存在三种相互作用。这种相互作用包括氢键、偶级

药物分子手性的意义

手性药物?指只含有单一对映体的药物为手性药物。手性药物是二十一世纪发展的重要方向手性似乎有些陌生又有些时髦,实际上手性在自然界是非常普遍的现象,在化学里就是一种同分异构现象。含有两个互为对映异构体的化合物称为手性化合物,其中仅含一个对映体的化合物称为光学纯手性化合物,分别含有这样化合物的药物称为手性

突破手性结构的极限

  密歇根大学领导的一个研究小组已经证明,由纳米粒子自我组装的微米级"领结"可以形成一系列精确控制的卷曲形状。这一进展为简单地创造与扭曲的光线相互作用的材料铺平了道路,从而带来在机器视觉和药品生产方面的新应用。  虽然生物学中充满了像DNA这样的扭曲结构,被称为手性结构,但扭曲的程度是被锁定的--试