美首次制造出非线性零折射率超材料

据美国每日科学网站12月6日(北京时间)报道,美国劳伦斯伯克利国家实验室的张翔(音译)领导的研究团队在今天出版的《科学》杂志撰文称,他们制造出了全球首块非线性零折射率超材料,通过这种材料的光在各个方向都会得到增强,有望为量子计算机快速提供多方向的光源,也可为量子网络提供相互纠缠的光子,从而大大促进量子网络的发展。 超材料是指一些具有天然材料所不具备的超常物理性质的人工复合结构或复合材料,其独特的光学属性源于材料超晶格的物理结构而非化学组成。使用超材料,张翔团队制造出了世界上第一款光学隐身斗篷;模拟了黑洞;并制造出了全球首块等离子体纳米激光器。 而在最新研究中,他们将关注点放在了超材料的非线性属性上。张翔解释道:“当光之间的相互作用改变材料的属性时出现的现象叫做非线性光学现象,其对材料科学、物理学以及化学来说非常重要。不同能量光子的聚合或分离能生成新的光源,是非线性光学的重要应用领域之一。” 科学家......阅读全文

什么是非线性光学材料?

非线性光学材料就是那些光学性质依赖于入射光强度的材料,非线性光学性质也被称为强光作用下的光学性质,主要因为这些性质只有在微光这样的强想干光作用下才表现出来。

非线性光学材料的主要应用

广泛应用于激光频率转换、四波混频、光束转向、图象放大、光信息处理、光存储、光纤通讯、水下通讯、激光对抗及核聚变等研究领域。

红外非线性光学晶体材料研究获进展

  红外非线性光学晶体作为激光频率转换的关键器件,在全固态激光器中具有重要的应用。当前商用红外非线性光学晶体主要包括黄铜矿型化合物,如AgGaS2, AgGaSe2和ZnGeP2。然而,由于各自本征的性能缺陷,这些材料已不能完全满足当前长波红外激光技术发展的需求,亟需突破现有材料性能的限制,发展高性

长波红外非线性光学材料研究获进展

红外非线性光学晶体作为激光频率转换的关键器件,在全固态激光器中具有重要的应用。当前商用的红外非线性光学晶体主要包括黄铜矿型化合物如AgGaS2, AgGaSe2和ZnGeP2 等。然而,由于各自本征的性能缺陷,这些材料已不能完全满足当前长波红外激光技术发展的需求,亟需突破现有材料性能的限制,发展高性

超快非线性光学技术:时域全反射和波导

麦克斯伟方程在时间和空间具有一定的对偶性(duality),比如空间上高斯光束的衍射与时间上高斯脉冲在具有负群速度色散的光纤中传输就具有这样的关系。科学家们对光的空间传输性质已经进行了几百年的研究,取得了丰硕成果。通过考察时空对偶性,借鉴光的空间传输现象,有利于理解甚至发现崭新的由超短脉冲参与的超快

超快非线性光学技术:多芯光纤中的超连续产生(一)

多芯光纤是一种新型光纤,这种光纤的包层中存在距离较近的多根纤芯,纤芯之间可产生较强的耦合,从而使各个纤芯内的光场成为一个整体,可用于光放大、脉冲压缩、超连续产生、光场调制、光子弹产生等过程。正六边形7芯光纤(横截面如图1),作为最常见的多芯光纤之一,可用于超连续产生[1],本篇文章通过数值模拟的方式

超快非线性光学技术:多芯光纤中的超连续产生(二)

(3)当纤芯距离适中时(芯距15.5μm,如图5),纤芯与纤芯的耦合强度足够,模式A和模式F可在早期被激发出来,且不会因为较大的群速度差异而分离。这使得模式A和模式F能在时间上重合在一起,为模式间的能量转换提供可能。当处于模式F的频率1和处于模式A的频率2恰好群速度相同且相差13.2THz时,模式F

基于非线性光学物质制备去除汞修复材料获进展

原文地址:http://news.sciencenet.cn/htmlnews/2022/10/488175.shtm 汞是一种不可降解的毒性重金属,主要来源于自然和人为污染。其以多种形态赋存,尤其甲基汞的毒性最强,甲基汞具有生物富集和生物放大特性,对神经系统造成严重损伤。而厌氧环境下,汞离子被

新疆理化所红外非线性光学材料研究取得进展

  红外非线性光学材料作为重要的变频晶体,在国防、通讯、医疗以及安全方面有着重要的应用。不同于紫外非线性光学晶体的应用波段(短波长方面),红外非线性光学材料则在中远红外领域(包括3-5和8-12 μm)有着重要的应用。  长期以来,中国科学院新疆理化技术研究所光电功能材料团队主要针对短波长非线性光学

新疆理化所红外非线性光学材料研究获进展

  红外非线性光学晶体作为激光频率转换的关键器件,在全固态激光器中具有广泛的应用。当前商用的中远红外非线性光学晶体主要包括类金刚石结构的AgGaS2,AgGaSe2和ZnGeP2等化合物。然而,由于各自本征的性能缺陷,这些材料已不能完全满足当前红外激光技术发展的需求。因此,亟需开发性能优异的新型中远

超快非线性光学技术之八:多芯光纤中的超连续产生1

多芯光纤是一种新型光纤,这种光纤的包层中存在距离较近的多根纤芯,纤芯之间可产生较强的耦合,从而使各个纤芯内的光场成为一个整体,可用于光放大、脉冲压缩、超连续产生、光场调制、光子弹产生等过程。正六边形7芯光纤(横截面如图1),作为最常见的多芯光纤之一,可用于超连续产生[1],本篇文章通过数值模拟的方式

超快非线性光学技术之八:多芯光纤中的超连续产生2

图5 中等耦合内芯激发脉冲演化图若以光谱的加权标准差作为超连续产生光谱宽度的度量,则不同功率和芯距下内芯激发的光谱宽度如图6所示。图6 内芯激发光谱宽度随功率和芯距的变化与以上结果对比,作者还讨论了当初始脉冲(脉冲宽度为100fs,功率15kW,中心波长1.55μm)输入到外芯(也就是图2(a)中的

超快非线性光学技术:超连续谱中色散波产生的半解析...

超快非线性光学技术:超连续谱中色散波产生的半解析理论在过去30年中,在具有三阶非线性的波导中产生超连续谱(Supercontinuum)一直是超快非线性光学中的重要研究课题,其背后的物理机制包含多种非线性过程,色散波产生(Dispersive wave generation)是其中非常重要的一种

新疆理化所在红外非线性光学材料研究方面取得进展

  红外非线性光学晶体作为激光频率转换的关键器件,在全固态激光器中具有广泛的应用。当前商用的中远红外非线性光学晶体主要包括类金刚石结构的AgGaS2(AGS)、AgGaSe2和ZnGeP2等化合物。然而,由于各自本征的性能缺陷,这些材料已不能完全满足当前红外激光技术发展的需求。因此,亟需开发性能优异

新疆理化所在红外非线性光学材料研究方面取得进展

  红外非线性光学晶体作为激光频率转换的关键器件,在全固态激光器中具有广泛的应用。当前商用的中远红外非线性光学晶体主要包括类金刚石结构的AgGaS2(AGS)、AgGaSe2和ZnGeP2等化合物。然而,由于各自本征的性能缺陷,这些材料已不能完全满足当前红外激光技术发展的需求。因此,亟需开发性能优异

新疆理化所获得氟磷酸盐非线性光学材料

  探索功能基团是进行功能导向性材料研发的关键所在。中国科学院新疆理化技术研究所新型光电功能材料研发团队一直致力于非线性光学材料设计制备。为缩短材料制备的研发周期,研发团队建立了材料软件研发、材料基因筛选及预测、材料设计、第一性原理计算和结构预测到设计制备的材料集成研究方案。  近期,针对紫外/深紫

新疆理化所深紫外非线性光学晶体材料研究获进展

  非线性光学晶体材料是重要的光电信息功能材料,在激光医学、激光频率变换、信息通讯、精密仪器加工等众多领域都具有重要应用。随着科技的发展,现阶段对非线性光学晶体材料提出了更高的要求。作为全固态激光器输出深紫外激光的关键元件,深紫外非线性光学晶体的研制和应用亟待发展突破。  中国科学院新疆理化技术研究

光学超材料的本领不只有隐形

原文地址:http://news.sciencenet.cn/htmlnews/2023/4/499503.shtm

《光学快讯》发布电磁超材料最新成果

近年来,人工局域表面等离激元(LSSP)因其亚波长操控和近场增强特性激发了人们极大的兴趣。但是,由于自身的材料损耗和辐射损耗,超薄LSSP谐振腔存在Q值较低的缺点。因此,研究人员采用多种激发方式以提高Q值,先后提出探头激励、平面波激励、人工表面等离激元(SSP)传输线激励、微带线激励等方法。微带线激

福建物构所深紫外非线性光学晶体材料研究获进展

  深紫外激光具有波长短、光子能量高等优点,因而在高分辨率成像、光谱应用、微细加工等诸多领域具有重要的应用价值,利用深紫外非线性光学晶体进行变频是获得深紫外激光的主要手段。我国是唯一掌握相关深紫外全固态激光技术的国家,KBe2BO3F2 (KBBF)是目前唯一实际可直接倍频产生深紫外激光的非线性光学

福建物构所深紫外非线性光学晶体材料研究获进展

  深紫外激光具有波长短、光子能量高等优点,因而在高分辨率成像、光谱应用、微细加工等诸多领域具有重要的应用价值,利用深紫外非线性光学晶体进行变频是获得深紫外激光的主要手段。我国是唯一掌握相关深紫外全固态激光技术的国家,KBe2BO3F2 (KBBF)是目前唯一实际可直接倍频产生深紫外激光的非线性光学

福建物构所深紫外非线性光学晶体材料研究获进展

  深紫外激光具有波长短、光子能量高等优点,因而在高分辨率成像、光谱应用、微细加工等诸多领域具有重要的应用价值,利用深紫外非线性光学晶体进行变频是获得深紫外激光的主要手段。优良的深紫外非线性光学晶体既要具有大的非线性光学效应,又要具有短的紫外吸收边,而这两种性能在某种程度上是相互冲突的,这就需要在两

理化所发展出中红外非线性光学材料筛选新策略

中红外非线性光学晶体能够通过频率转换产生中红外可调谐激光,在环保、医疗等方面应用广泛。目前,主要的商用红外非线性光学晶体有硫镓银、硒镓银和磷锗锌等,但存在激光损伤阈值较低的缺陷,难以满足更丰富的实际需求。因此,亟需探索抗激光损伤性能更优异的中红外非线性光学材料。由于热损伤是激光损伤的重要组成部分,具

福建物构所在非线性光学晶体材料研究中取得系列进展

  非线性光学(NLO)晶体材料在现代激光科学与技术中占有重要地位。BO3平面基元作为优秀的非线性光学构筑基元被用来设计和合成了系列优秀的非线性光学晶体材料,NO3因其共轭平面结构也被公认为是构筑NLO材料的理想结构单元之一。然而,硝酸盐因非常容易溶于水,使得发展该类化合物作为NLO晶体材料遇到瓶颈

理化所发展出中红外非线性光学材料筛选新策略

  中红外非线性光学晶体能够通过频率转换产生中红外可调谐激光,在环保、医疗等方面应用广泛。目前,主要的商用红外非线性光学晶体有硫镓银、硒镓银和磷锗锌等,但存在激光损伤阈值较低的缺陷,难以满足更丰富的实际需求。因此,亟需探索抗激光损伤性能更优异的中红外非线性光学材料。由于热损伤是激光损伤的重要组成部分

碳酸盐紫外非线性光学晶体材料研究获新进展

  激光光源的波长拓展很大程度上依赖于频率转换器件材料—非线性光学晶体的变频能力。随着激光在紫外和深紫外波段应用的日益重要,如何设计合成性能更优的硼酸盐非线性光学材料以及硼酸盐以外的紫外和深紫外非线性光学材料是当前研究的重点和热点。   在国家自然科学基金和中科院重要方向项目的资助下,中科院福建物

理化所发展出中红外非线性光学材料筛选新策略

中红外非线性光学晶体能够通过频率转换产生中红外可调谐激光,在环保、医疗等方面应用广泛。目前,主要的商用红外非线性光学晶体有硫镓银、硒镓银和磷锗锌等,但存在激光损伤阈值较低的缺陷,难以满足更丰富的实际需求。因此,亟需探索抗激光损伤性能更优异的中红外非线性光学材料。由于热损伤是激光损伤的重要组成部分,具

我国学者在非线性光学材料研究取得新进展

  非线性光学(NLO)晶体材料在现代激光科学与技术中占有重要地位。长期以来,科学家们一直在追求获得具有更大倍频效应的NLO材料。然而,大的倍频效应常常是和深紫外透过能力是相冲突的。这使得获得倍频效应增强的深紫外NLO材料尤为困难,特别是考虑到深紫外区逼近NLO材料光学透过能力的理论极限。  中科院

福建物构所深紫外非线性光学晶体材料研究获进展

  深紫外激光具有波长短、光子能量高等优点,因而在高分辨率成像、光谱应用、微细加工等诸多领域具有重要的应用价值,利用深紫外非线性光学晶体进行变频是获得深紫外激光的主要手段。优良的深紫外非线性光学晶体既要具有大的非线性光学效应,又要具有短的紫外吸收边,而这两种性能在某种程度上是相互冲突的,这就需要在两

新疆理化所在汞基红外非线性光学材料方面获进展

  红外非线性光学晶体作为激光频率转换的关键器件,在全固态激光器中应用广泛。当前,商用的中远红外非线性光学晶体主要包括类金刚石结构的AgGaS2、AgGaSe2和ZnGeP2等化合物。然而,由于各自本征的性能缺陷,这些材料已不能完全满足当前红外激光技术发展的需求。因此,亟需开发性能优异的新型中远红外