美国海军研究实验室研制出新型陶瓷装甲玻璃

为了对人员和装备提供必要的保护,美国防部正寻求能用于装甲窗口的高透明度材料。鉴于以上要求,美国海军研究试验室(NRL)的科学家们研发出了纳米晶尖晶石制造工艺,使其硬度比现有军用车辆中使用的尖晶石装甲材料高50%。NRL的纳米晶尖晶石项目论证了:只要将晶粒尺寸减小到28纳米,就能提高透明陶瓷材料的硬度,使尖晶石硬度达到前所未有的高度。这种硬度更佳的尖晶石材料可用于制造更好的军用车辆装甲窗口,能为作战人员和传感器等装备提供保护,并兼具其它优点。 NRL纳米晶尖晶石的最大优势在于其高透明度,使其能在紫外、可见光和红外光学仪器中应用。军用装甲窗口材料需要高透明度,以便于车辆中人员和仪器的观测。不同传感器涉及的光线波长也不同,热跟踪装置使用的是红外线,紫外成像技术常用于侦测可见光以外的威胁。NRL纳米晶尖晶石窗口的透明度能够满足各类重要光线通过,简化系统设计和满足重量要求。 除了军用领域,纳米晶尖晶石在其它国防和民用领域也将有......阅读全文

美国海军研究实验室研制出新型陶瓷装甲玻璃

  为了对人员和装备提供必要的保护,美国防部正寻求能用于装甲窗口的高透明度材料。鉴于以上要求,美国海军研究试验室(NRL)的科学家们研发出了纳米晶尖晶石制造工艺,使其硬度比现有军用车辆中使用的尖晶石装甲材料高50%。NRL的纳米晶尖晶石项目论证了:只要将晶粒尺寸减小到28纳米,就能提高透明陶瓷材料的

锂电池材料尖晶石锰酸锂的优点介绍

  尖晶石锰酸锂LiMn2O4(LMO)材料的主要优点是原料资源丰富、成本低、电池安全性好;其公认的主要缺点是电池比能量低,同时循环稳定性欠佳。上世纪90年代开始,受其原料及工艺成本低、安全性好的吸引,人们探索了LMO在电动大巴、乘用轿车、特种车辆、电动工具等领域的应用。传统的固相烧结制备技术无法实

关于尖晶石锰酸锂电池的特点和参数介绍

  其高比能量使钴酸锂成为手机,笔记本电脑和数码相机的热门选择。电池由氧化钴阴极和石墨碳阳极组成。阴极具有分层结构,在放电期间,锂离子从阳极移动到阴极,充电过程则流动方向相反。钴酸锂的缺点是寿命相对较短,热稳定性低和负载能力有限(比功率)。像其他钴混合锂离子电池一样,钴酸锂采用石墨阳极,其循环寿命主

聚合物锂离子电池正极材料锰尖晶石的简介

  目前人们试图通过修饰尖晶石LiMnO材料的成分,把材料中Mn的平均氧化态保持在略低于3.5,从而抑Jahn-Teller扭曲以减速小对尖晶石结构的破坏。其中一个修饰的方法即掺杂一些过渡金属离子,如Co,Cr,Ni,Fe和Ti等离子来取代材料中的部分Mn。该文首先采用传统的固相方法合成了标准尖晶石

聚合物锂离子电池正极材料锰尖晶石的介绍

  相比较层状化合物LiCoO和LiNiO而言,尖晶石LiMnO以它价格上和环境保护方面的优势成为锂离子电池阴极材料中最具发展潜力的一种。但是,尖晶石LiMnO在电池的充放电循环容量损失归结为有机电解液的分解和Jahn-Teller效应导致的结构破坏。

兰州化物所制备太阳能选择性吸热涂料的方法获发明ZL

  太阳能选择性吸附涂层是太阳能热利用中的关键技术,对提高集热器效率至关重要。选择性吸热涂层可用多种方法来制备,如喷涂法、电化学法、真空蒸镀和磁控溅射法等。然而这些方法均存在一定不足,如污染环境、工艺条件苛刻、生产成本较高、耐候性能不理想、发射率较高等。尖晶石型过渡金属氧化物(尖晶石型

孙学良Angew:原位XAS结合FDMNES揭示尖晶石相转变可逆过程

▲第一作者: 肖必威,刘晗硕,陈宁;通讯作者: 孙学良&Gianluigi Botton&蔡梅通讯单位: 加拿大西安大略大学&加拿大麦克马斯特大学&美国通用汽车论文DOI:10.1002/anie.202005337全文速览  近日,加拿大西安大略大学孙学良教授课题组与麦克马斯特大学Gianluig

尖晶石铁酸盐提升锂硫电池的体积能量密度和循环稳定性

  相比各种碳材料,过渡金属氧化物不仅对多硫化物具有强的化学吸附能力,可有效抑制多硫化物的穿梭效应,改善硫电极循环性能。同时,过渡金属氧化物本身高的密度有利于提高硫基复合正极材料的振实密度,有望实现硫电极的高质量比容量和高体积比容量。相比于一维碳纳米管(CNTs),极性铁酸镍一维纳米纤维复合材料具有

纳米氧化铝用作锂电池的应用特性

  1、纳米氧化铝用作锂电池电极涂层,可以有效的起到隔热,绝缘的作用,提高安全性能。  2、纳米氧化铝应用于改性进尖晶石锰酸锂材料,生产出的电池可逆容量达到107mAh/克,55C循环200次,容量保持率大于90%,优于国际同类产品水平,是国内第一个可用于用高功率锂离子电池的材料。  3、随着锂离子

德国应用化学:大连化物所开发高水热稳定性Pd基催化剂

  近日,中国科学院大连化学物理研究所催化与新材料研究室研究员李为臻、乔波涛和中科院院士张涛团队,与北京大学教授马丁合作,在高稳定Pd基甲烷燃烧催化剂制备研究中取得新进展,以镁铝尖晶石(MgAl2O4)为载体,通过添加非还原性氧化物(Al2O3、ZrO2、SiO2)抑制Pd的过度氧化,实现Pd纳米粒

化学所电极材料研究:实现材料表界面活性的有效控制

  能量密度的提升是锂离子电池领域的研究重点,而正极材料是决定锂离子电池能量密度的关键。镍锰酸锂材料是一种高电压的正极材料,具有高能量密度和良好的倍率性能;然而,其自身的高工作电压会显著加速电极材料表面的副反应,严重损害电极材料的结构稳定性和长循环性能,限制了它在高比能动力电池中的应用。  在国家自

纳米氧化铝在锂电池中的应用特性介绍

  1、纳米氧化铝用作锂电池电极涂层,可以有效的起到隔热,绝缘的作用,提高安全性能  2、掺杂铝到钴酸锂中,可形成固溶体,稳定晶格,提高倍率性能和循环性能。  3、用纳米氧化铝对钴酸锂进行包覆,可以提高热稳定性,提高循环性能和耐过充能力,抑制氧的生成和LiPF6的分解,可避免LiCo02与电解液直接

团队发表尖晶石型铁酸盐催化二氧化碳加氢的综述文章

近日,中国科学院大连化学物理研究所孙剑研究员、葛庆杰研究员、位健副研究员团队受邀发表了尖晶石型铁酸盐催化剂(SFCs)驱动二氧化碳(CO2)加氢制备高值化学品综述文章。相关成果发表在《物质》上。SFCs作为一类有潜力的优良催化材料,因其结构灵活、组成可调和稳定性优异,而被广泛用于CO2加氢持续生产高

我所发表尖晶石型铁酸盐催化二氧化碳加氢的综述文章

原文地址:http://www.dicp.cas.cn/xwdt/kyjz/202305/t20230510_6751191.html  近日,我所氢能与先进材料研究部碳资源小分子与氢能利用研究组(DNL1905组)孙剑研究员、葛庆杰研究员、位健副研究员团队受邀发表了尖晶石型铁酸盐催化剂(SFCs)

物理所合作研究取得对唯一尖晶石氧化物超导体的最新认识

  LiTi2O4(LTO)是迄今发现的唯一具有尖晶石结构的氧化物超导体,它的超导电性主要受Ti原子的3d 电子支配。目前没有高质量的LTO单晶,多晶样品上获得的比热数据以及Andreev反射谱表现出传统BCS电-声相互作用超导体的实验特征,但软X射线散射和核磁共振等测量发现该体系中存在较强的电子-

“先进稀土材料制备及应用技术(二期)”课题通过技术验收

  2018年4月27日,科技部高技术中心在沈阳组织“十二五”863计划新材料技术领域“先进稀土材料制备及应用技术(二期)”重大项目课题“高效稀土改性纳米耐硫变换催化剂和净化剂产业化关键技术及应用”技术验收会。  课题针对轻稀土的高值高效利用的重大科技需求,围绕我国化工行业高浓度CO的高效利用和转化

纳米服装,真的有纳米材料吗?

越来越多的高科技已经进入到我们日常生活之中,比如纳米服装。将纳米级的微粒覆盖在纤维表面或镶嵌在纤维甚至分子间隙间,利用纳米微粒表面积大、表面能高等特点,在物质表面形成一个均匀的、厚度极薄的(肉眼观察不到、手摸感觉不到)、间隙极小(小于100nm)的‘气雾状’保护层。使得常温下尺寸远远大于100nm的

化物所根据OXZEO催化作用将碳资源转化为高值化学品

  近日,大连化物所碳基能源纳米材料研究组(DNL2102组)包信和院士、潘秀莲研究员团队在合成气转化OXZEO反应活性调控机制方面取得新进展,揭示了双功能催化剂金属氧化物表面配位不饱和金属位点对一氧化碳/氢气(CO/H2)的活化转化反应活性及路径的调控原理。  围绕OXZEO催化作用机制,科研人员

纳米硬度

  硬度(hardness)是评价材料力学性能的一种简单、的手段,已有百年的应用历史,但是,关于硬度的定义目前尚未统一。从作用形式上,可定义为“某一物体抵抗另一物体产生变形能力的度量”;从变形机理上,可定义为“抵抗弹性变形、塑性变形和破坏的能力”或“材料抵抗残余变形和破坏的能力”。无论如何定义,在测

纳米电池

纳米电池为满足这一迫切需求,研究人员花了大量的心思在纳米尺度提升电池性能。Science杂志和知社学术圈上周就大幅度报道斯坦福大学崔屹教授的纳米电池,称其可能改变世界。这一尺度是如此的精细,小到几个原子、几个分子的细微运动,就可能改变一切。可是,我们怎么样才能在纳米尺度,探测原子、分子如此细微的变化

起底六种锂电池负极材料如何掌控水分检测

   锂电池主要负极材料有锡基材料、锂基材料、钛酸锂、碳纳米材料、石墨烯材料等。锂电池负极材料的能量密度是影响锂电池能量密度的主要因素之一,锂电池的正极材料、负极材料、电解质、隔膜被称为锂电池的四个zui核心材料。下面我们简单介绍一下各类负极材料的性能指标、优缺点及可能的改进方向如何掌控负极材料水分

锰酸锂电池的发展前景分析

  锰酸锂是较有前景的锂离子正极材料之一,相比钴酸锂等传统正极材料,锰酸锂具有资源丰富、成本低、无污染、安全性好、倍率性能好等优点,是理想的动力电池正极材料,但其较差的循环性能及电化学稳定性却大大限制了其产业化。锰酸锂主要包括尖晶石型锰酸锂和层状结构锰酸锂,其中尖晶石型锰酸锂结构稳定,易于实现工业化

锰酸锂的基本信息

锰酸锂是较有前景的锂离子正极材料之一,相比钴酸锂等传统正极材料,锰酸锂具有资源丰富、成本低、无污染、安全性好、倍率性能好等优点,是理想的动力电池正极材料,但其较差的循环性能及电化学稳定性却大大限制了其产业化。锰酸锂主要包括尖晶石型锰酸锂和层状结构锰酸锂,其中尖晶石型锰酸锂结构稳定,易于实现工业化生产

兰州化物所高熵陶瓷电磁波调控研究获进展

  与以焓调控为主导的传统材料不同,高熵陶瓷材料创新性地采用以熵调控为主导的设计思路,多组分近乎无限的排列和组合,显示出独特的力学、电学、磁学和物理化学性能,在热防护、储能、电磁波吸收和催化等领域具有潜力。然而,高熵陶瓷在电磁波调控方向的研究鲜有报道。  中国科学院兰州化学物理研究所清洁能源化学与材

近代物理所:表面纳米化钢的氧化层与基体结合强度更高

  以铅或铅铋共晶合金(LBE)作为冷却剂的铅冷快堆,具有优良的中子物理特性、热工水力特性及安全特性,成为第四代核反应堆的六种推荐堆型之一。然而,冷却剂LBE与结构材料的相容性问题成为制约铅冷快堆发展的主要因素之一。  近日,中国科学院近代物理研究所利用喷丸处理工艺使铁素体/马氏体钢SIMP表面纳米

苏州纳米构建金纳米棒@金纳米粒子手性螺旋超结构

  等离子体纳米粒子及其组装结构因为优异的光学特性在纳米科技中具有广泛应用,如超材料、生物传感器、光电器件等。精准构建等离子体纳米结构对于光学特性的深入研究意义重大,而精确调控等离子体纳米粒子的表面功能性质则是进一步获得复杂自组装体系的关键。目前借助各种物理和化学方法,可在纳米粒子表面的一定区域范围

关于锰酸锂的物理性质介绍

  锰酸锂是较有前景的锂离子正极材料之一,相比钴酸锂等传统正极材料,锰酸锂具有资源丰富、成本低、无污染、安全性好、倍率性能好等优点,是理想的动力电池正极材料,但其较差的循环性能及电化学稳定性却大大限制了其产业化。锰酸锂主要包括尖晶石型锰酸锂和层状结构锰酸锂,其中尖晶石型锰酸锂结构稳定,易于实现工业化

锂离子电池正极材料的基本介绍

  目前国内外产业化应用的锂离子动力电池正极材料有磷酸铁锂、锰酸锂、钴酸锂、三元(镍钴锰酸锂、镍钴铝酸锂)、镍酸锂材料  钴酸锂的容量可达到140mAh/g,质量轻、体积小、充放电电压平稳、电导率高、生产工艺简单;制备方法有高温固相法、溶胶-凝胶法、沉淀法、喷雾干燥法、水热合成法;但高的原材料价格、

锰酸锂的基本信息介绍

  锰酸锂(Lithium Manganate)是一种无机化合物,化学式为LiMn2O4。通常为尖晶石相,黑灰色粉末。易溶于水 。  锰酸锂主要为尖晶石型锰酸锂,尖晶石型锰酸锂LiMn2O4是Hunter在1981年首先制得的具有三维锂离子通道的正极材料,一直受到国内外很多学者及研究人员的极大关注,

锂离子正极材料锰酸锂的简介

  锰酸锂(Lithium Manganate)是一种无机化合物,化学式为LiMn2O4。通常为尖晶石相,黑灰色粉末。易溶于水 [1] 。  锰酸锂主要为尖晶石型锰酸锂,尖晶石型锰酸锂LiMn2O4是Hunter在1981年首先制得的具有三维锂离子通道的正极材料,一直受到国内外很多学者及研究人员的极