新型氧化钨量子点电极材料问世
近日,中科院苏州纳米所赵志刚课题组和苏州大学耿凤霞课题组合作开发出一种具备超快电化学响应性能的新型氧化钨量子点电极材料。该成果发表在近期出版的国际期刊《先进材料》上。 锂离子电池、超级电容器、燃料电池等新兴能量转化与存储器件,在解决传统能源短缺、可再生能源能量来源不稳定等问题上已展现出巨大潜力,受到学术界和工业界的广泛关注。在电极材料中实现快速高效的电子、离子传输过程是人们追求的目标,也是提高相关器件性能的核心技术问题。 与传统块体材料相比,量子点(零维纳米材料)的小尺寸、大比表面积、高的表面原子比例意味着材料与电解液的充分接触以及更短的离子扩散距离,堪称理想的电极材料。然而,将量子点应用于电化学的研究结果大多并不理想,这与常见量子点材料电化学活性差、表面有机配体包覆以及粒子间界面电阻较高密切相关。 赵志刚课题组和耿凤霞课题组针对这一问题进行研究,在氧化钨量子点制备及其电化学应用方面的研究取得突破进展。他们采用钨基金属......阅读全文
新型氧化钨量子点电极材料问世
近日,中科院苏州纳米所赵志刚课题组和苏州大学耿凤霞课题组合作开发出一种具备超快电化学响应性能的新型氧化钨量子点电极材料。该成果发表在近期出版的国际期刊《先进材料》上。 锂离子电池、超级电容器、燃料电池等新兴能量转化与存储器件,在解决传统能源短缺、可再生能源能量来源不稳定等问题上已展现出巨大潜力
苏州纳米所等制备出超快电化学响应的氧化钨量子点材料
诸如锂离子电池、超级电容器、燃料电池等新兴能量转化与存储器件,在解决传统能源短缺、可再生能源能量来源不稳定等问题上已展示出巨大潜力,并受到学术界和工业界的广泛关注。 一直以来,在电极材料中实现快速、高效的电子/离子传输过程是人们追求的目标,也是提高相关器件性能的核心技术问题。与传统
钠离子电池电极材料物性,影响电化学储能微观机制
近日,中国科学院深圳先进技术研究院纳米调控与生物力学研究中心付比助理研究员(第一作者)及湘潭大学客座学生苏永、余俊熹等在电化学知名期刊Electrochimica Acta(IF 5.12)上发表重要研究进展。这篇题为Single crystalline nanorods of Na0.44Mn
电极材料的电化学性能
分为惰性电极和非惰性电极。惰性电极(铂碳棒)一般作为阴极,非惰性电极:一般与电解质溶液中主要电解质的金属阳离子为相同金属,(金属活动顺序表中除铂金外都可以作为非惰性电极)
电极材料的电化学性能
分为惰性电极和非惰性电极。惰性电极(铂碳棒)一般作为阴极,非惰性电极:一般与电解质溶液中主要电解质的金属阳离子为相同金属,(金属活动顺序表中除铂金外都可以作为非惰性电极)
院士出力,攻克量子点材料难关
中国科学技术大学获悉,该校中国科学院微观磁共振重点实验室杜江峰院士、樊逢佳教授等人与其他科研人员合作,在量子点合成过程中引入晶格应力,调控量子点的能级结构,获得了具有强发光方向性的量子点材料,此材料应用在量子点发光二极管(QLED)中有望大幅提升器件的发光效率。这一研究成果日前发表在《科学进展》杂志
量子点材料:现状、机遇和挑战
量子点属于一大类新材料——溶液纳米晶中的一种。溶液纳米晶具有晶体和溶液的双重性质,量子点是其中马上具有突破性工业应用的材料。 与其他纳米晶材料不同,量子点是以半导体晶体为基础的。尺寸在1~100纳米之间,每一个粒子都是单晶。量子点的名字,来源于半导体纳米晶的量子限域效应,或者量子尺寸效应。当半
超导量子干涉器件
(SQUID) ①直流SQUID:相当于采用超导环路将两个约瑟夫逊结并接起来,形成一种两端器件。在端电压降为零时,它所能通过的最大电流是穿过环路的磁通量的周期函数,周期φ0(等于2.07×10-15韦)称为磁通量子。由于φ0很小,这种周期性的关系为测量磁通提供了极其精密的分度。②射频SQUID:
自然状态材料中存在量子临界点
据美国物理学家组织网1月20日报道,近日,一个美日国际研究小组以镱为基础材料研制出一种奇特的新型超导体。该超导体不需要改变压力、磁场强度或经化学掺杂,在自然状态就能达到物理学家所说的“量子临界点”。这一发现突破了理论物理的限制,为人们理解量子临界状态打开了新视野。这种异常性质,也将
科学家研发新型量子点显示材料
记者日前从合肥工业大学获悉:该校科研团队首次成功将石墨相氮化碳应用于下一代量子点显示技术。该研究成果发表在著名国际学术期刊《今日材料》上,为量子点显示技术的发展开辟了高效环保的全新材料方向。 量子点显示(QLED)被认为是继有机发光显示(OLED)之后的下一代显示技术,具有色纯度高、色域宽、成
锂电池的电极材料选择介绍
不同的电极材料会赋予锂电池不同的特性,这主要体现在以下几个方面: ● 寿命; ● 环境温度范围; ● 最低工作温度时的最大放电电流; ● 电压上升达下限的最短时间; ● 存储时间和存储条件; ● 额定电压、最低电压和最高电压; ● 初始放电电流、平均放电电流和最大放电电流; ●
量子点新型太阳电池研究取得进展
中科院新型薄膜太阳电池重点实验室在量子点新型太阳电池研究中取得进展 近期,中科院新型薄膜太阳电池重点实验室发展了量子点敏化太阳电池中量子点制备的新方法。该方法制备的量子点和纳晶氧化物表面直接接触,在二氧化钛表面覆盖率高。 在国家973重大科学问题导向项目的支持下,中国科学院新型薄
超小黄铁矿量子点可提升电池性能
如果智能手机的电池中添加了量子点——比人类发丝宽度小1万倍的纳米晶体,充电时间可以缩短到30秒,但效果只能维持几个充电周期。不过,美国范德堡大学的研究团队找到了解决办法:使用蕴藏丰富、成本低廉的黄铁矿来制造量子点,可确保电池在几十个充电周期内都能快速充电。 范德堡大学官网11日发布新闻公报称
清华大学李景虹入选2019年中国科学院院士增选初选
2019年8月1日凌晨,中国科学院公布了2019年中国科学院院士增选初步候选人名单(详细名单),共181人入选,其中化学部共28人入选,清华大学长江特聘教授李景虹就是这28个入选候选人之一。清华大学长江特聘教授 李景虹 李景虹清华大学长江特聘教授,任清华大学化学系学术委员会主任、分析化学所所长
中英专家利用真菌首次合成电池电极材料
当面包上长出了霉菌,您也许就直接把它扔掉了。但中英科学家17日说,这种霉菌在电池的电极材料生产方面有望发挥大作用。 由英国敦提大学教授杰弗里·加德领导、中国科研人员参与的团队在新一期美国《当代生物学》杂志上报告说,俗称红色面包霉的粗糙脉孢菌是生物学研究中常用的一种模式生物,他们利用这种真菌合成
锂离子电池活性电极材料的简介
锂离子电池性能的提高主要由正负极活性电极材料和电解液来决定。本书重点介绍活性电极材料。经过数十年的研究,有些活性电极材料没有获得实际应用而被淘汰;有些正在获得应用;还有一些潜在的活性电极材料为研究者所关注。本书从结构和电化学两个方面系统地介绍了锂离子电池材料,分析了被淘汰的材料未能应用的原因、为
多孔道二维纳米材料的电化学储能应用
二维纳米材料,例如石墨烯、过渡金属硫化物等,具有许多独特的物理、化学和电学性能。相比体相材料,二维纳米材料具有更多的比表面积和活性位点,开放的离子扩散通道,这使得锂离子(和碱金属离子)的快速传输和高效储存成为可能。尽管如此,二维材料中存在的权限仍然限制了其在电化学储能方面的应用,例如在电极处理和组装
智能所在纳米间隙电极传感器件研究工作中获重要进展
在国家重点基础研究发展计划(973项目)、国家自然科学基金委重大研究计划“纳米制造的基础研究”、中科院“百人计划”等项目的大力支持下,近期,中科院合肥研究院智能所仿生功能材料与传感器件研究中心研究员刘锦淮和黄行九带领课题组在纳米间隙电极传感器件的研究中取得重要进展。 纳米间隙电
合肥研究院在量子点敏化太阳能电池研究中取得进展
中国科学院合肥物质科学研究院安徽光学精密机械研究所激光技术中心研究员方晓东课题组在量子点敏化太阳能电池(QDSCs)研究方面取得进展,相关研究结果以A new probe into thin copper sulfide counter electrode with thickness belo
科学家发展“表面功夫”-揭示铝离子电池失效机制
中国科学报社制图 理解电化学储能器件的工作原理及失效机制,对指导高性能器件的开发具有重要意义。近日,中国科学院大连化学物理研究所研究员傅强团队调变铝离子电池器件的工作环境和气氛,利用原位X射线光电子能谱(XPS)和拉曼光谱(Raman)等研究储能器件发现,无水气氛下,铝离子电池电极中的阴阳离子重新
量子点材料将改善LED-为照明产业做贡献
量子点属于一大类新材料——溶液纳米晶中的一种。溶液纳米晶具有晶体和溶液的双重性质,量子点是其中马上具有突破性工业应用的材料。 与其他纳米晶材料不同,量子点是以半导体晶体为基础的。尺寸在1~100纳米之间,每一个粒子都是单晶。量子点的名字,来源于半导体纳米晶的量子限域效应,或者量子尺寸效应。当半
金属魔法:用半导体量子点打造梦想材料
据最新一期《自然·通讯》杂志报道,包括日本RIKEN新兴物质科学中心研究人员在内的团队成功创造了一种由硫化铅半导体胶体量子点组成的“超晶格”,研究人员在这种晶格中实现了类似金属的导电性,导电性比目前的量子点显示器高100万倍,且不会影响量子限制效应。这一进步可能会彻底改变量子点技术,从而在电致发光设
用废包装材料制造锂电池电极
来自普渡大学的科学家们用聚苯乙烯和淀粉基“花生式”包装材料制造具有碳纳米结构和微层结构的锂离子电池阳极。 科学家们已经找到将废弃的“花生式”包装材料转化为高性能锂电池碳电极的方法,这是一种能够实现废物利用的环保新方法,而这种碳电极的性能甚至优于传统的石墨电极。 电池有阳极和阴极两极,锂离子电
根据电极材料对锂电池进行分类介绍
电池正极材料:目前已使用有钴酸锂、锰酸锂、镍酸锂、三元(镍钴锰酸锂)、磷酸亚铁锂等。负极活性物质主要有石墨化碳材料、无定形碳材料、氮化物、硅基材料、新型合金和其他材料。次要成分:不直接参加电极反应,但可以改善电池的导电性能和加工性能。主要有集流体、粘接剂和导电剂等。
锂离子电池电极材料磷酸亚铁锂简介
磷酸亚铁锂,化学式:LiFePO4,磷酸亚铁锂为近来新开发的锂离子电池电极材料,主要用于动力锂离子电池,作为正极活性物质使用,人们习惯也称其为磷酸铁锂。 磷酸亚铁锂电极材料主要用于动力锂离子电池。 自1996年日本的NTT首次揭露AyMPO4(A为碱金属,M为CoFe两者之组合:LiFeCO
Exploration:席夫碱——可持续电池全新电极材料
在过去的几十年中,人类逐渐意识到化石燃料的使用对环境的负面影响,这也促使人们开始重视其向可再生能源的转型。为了实现这一目标,还需要寻找合适的工具用于储存和提供电能,例如可充电电池和超级电容器等。电池将电子从具有高还原电位的正极转移到具有较低还原电位的负极材料来存储能量,而超级电容器则通过电极之间
高能量密度锂电池成为研究热点
高能量密度是储能器件未来的重要发展方向,锂离子电池作为性能优异的储能器件在过去几十年被广泛使用。然而,目前传统锂离子电池正极材料的能量密度已经逼近理论值,如何进一步提升能量密度成为研究热点。 全固态金属锂电池作为下一代高能量密度主流技术方案受到广泛关注。理论上电池器件的能量密度在材料层面由其理
表界面电化学研究揭示储能器件失效机制
近日,我所催化基础国家重点实验室纳米与界面催化研究组(502组)傅强研究员团队通过调变铝离子电池器件的工作环境和气氛,利用原位X-射线光电子能谱(XPS)和Raman等表界面表征方法研究储能器件过程发现,无水气氛下,电极中的插层阴阳离子重新分布导致器件发生结构和电子态的弛豫;而在含水气氛下,环境
电池行业利好-新材料大幅提升太阳能电池量子效率
科技日报北京4月10日电 (记者张佳欣)据最新一期《科学进展》杂志报道,美国理海大学研究人员开发出一种新材料,可大幅提高太阳能电池板效率。使用该材料作为太阳能电池活性层的原型表现出80%的平均光伏吸收率、高光生载流子生成率以及高达190%的外量子效率(EQE)。这一指标远远超过了突破硅基材料的肖克利
基于石墨烯和量子点造太阳能电池
俄罗斯大学和日本法政大学学者组成的一个国际小组开始启动在石墨烯和量子点基础上制造混合平面结构的工作。图片来源于网络 石墨烯拥有极高的导电能力,使它成为毫微电子学所需要的非常富有前景的材料。莫斯科物理工程学院纳米生物工程实验室学者伊戈尔·纳比耶夫说:“我们将开展科研工作,让人了解如何提高现有太阳