遗传学大牛Nature发表新技术:单分子互作测序
George M. Church 随着技术的发现,大规模并行DNA测序得到了广泛的应用,为许多研究领域带来了一场革命。然而,高通量的蛋白质分析仍然困难重重,现在亟需高质量低成本的蛋白分析技术。 为此,遗传学界的大牛George M. Church领导哈佛医学院的团队,开发了一种单分子互作测序(SMI-seq)技术。该技术能够实现单分子水平上的并行分析,获得大量蛋白质的互作图谱。这一成果发表在近期的Nature杂志上,文章的通讯作者是哈佛医学院的George M. Church和Liangcai Gu。 研究人员利用PRMC复合体(蛋白质-核糖体-mRNA-互补DNA),通过体外的核糖体展示(ribosome display)技术,将DNA条码连到蛋白质上。此外也可以通过催化酶,分别给不同蛋白连上DNA条码。这些自带条码的蛋白可以在水溶液中进行检测。 随后,研究人员将上述蛋白固定在......阅读全文
测序牛人发布蛋白单分子测序技术
人类生命的蓝图是三十亿碱基对组成的人类基因组。而DNA编码的蛋白质是几乎所有生命过程的主要执行者。 现在,美国亚利桑纳州立大学Biodesign研究所的Stuart Lindsay及其同事,在纳米孔DNA测序技术的基础上,开发了能够精确鉴定氨基酸的蛋白单分子测序技术。这一技术不仅可以用
Nature子刊:蛋白单分子测序技术问世
最近,美国学者在纳米孔DNA测序技术的基础上,开发了能够精确鉴定氨基酸的蛋白单分子测序技术。这一技术不仅可以用来在临床上测序蛋白质和检测新生物指标,还有望给医疗领域带来彻底的改变,在单分子水平上精确监控患者对治疗的应答情况 人类生命的蓝图是三十亿碱基对组成的人类基因组。而DNA编码的蛋
DNA测序的测序技术
高通量测序技术(High-throughput sequencing)又称“下一代”测序技术(Next-generation sequencing technology),以能一次并行对几十万到几百万条DNA分子进行序列测定和一般读长较短等为标志。根据发展历史、影响力、测序原理和技术不同等,主要有以
蛋白质测序的测序要求
●1 样品必需纯(>97%以上); ●2 知道蛋白质的分子量; ●3 知道蛋白质由几个亚基组成; ●4 测定蛋白质的氨基酸组成;并根据分子量计算每种氨基酸的个数。 ●5 测定水解液中的氨量,计算酰胺的含量。
DNA测序技术的测序规律
生成互相独立的若干组带放射性标记的寡核苷酸,每组寡核苷酸都有固定的起点,但却随机终止于特定的一种或者多种残基上。由于DNA上的每一个碱基出现在可变终止端的机会均等,因此上述每一组产物都是一些寡核苷酸混合物,这些寡核苷酸的长度由某一种特定碱基在原DNA全片段上的位置所决定。在可以区分长度仅差一个核苷酸
DNA测序技术的测序原理
化学修饰法测序原理化学试剂处理末段DNA片段,造成碱基的特异性切割,产生一组具有各种不同长度的DNA链的反应混合物,经凝胶电泳分离。化学切割反应:包括碱基的修饰,修饰的碱基从其糖环上转移出去在失去碱基的糖环处DNA断裂。Sanger法测序的原理就是利用一种DNA聚合酶来延伸结合在待定序列模板上的引物
蛋白质测序
进行蛋白质测序的方法包括: 埃德曼降解 肽质量指纹图谱 质谱分析 蛋白酶水解法 如果编码蛋白质的基因是已知的,那么目前测序和推断蛋白质序列要容易得多。通过上述方法之一确定蛋白质氨基酸序列的一部分(通常是一端)可能足以鉴定携带该基因的克隆。
蛋白质测序
Edman降解法 实验方法原理 主要有质谱法,利用蛋白质测序仪进行测序以及利用蛋白质对应DNA或mRNA进行间接测序。传统的蛋白质测序实验一般包括以下步骤:1
蛋白质测序
一、概念当前,所谓蛋白质测序,主要指的是蛋白质的一级结构的测定。蛋白质的一级结构(Primary structure)包括组成蛋白质的多肽链数目。很多场合多肽和蛋白质可以等同使用。多肽链的氨基酸顺序,它是蛋白质生物功能的基础。 蛋白质氨基酸顺序的测定是蛋白质化学研究的基础。自从1953年F.San
蛋白质测序
一、概念当前,所谓蛋白质测序,主要指的是蛋白质的一级结构的测定。蛋白质的一级结构(Primary structure)包括组成蛋白质的多肽链数目。很多场合多肽和蛋白质可以等同使用。多肽链的氨基酸顺序,它是蛋白质生物功能的基础。 蛋白质氨基酸顺序的测定是蛋白质化学研究的基础。自从1953年F.San
蛋白质测序
一、概念当前,所谓蛋白质测序,主要指的是蛋白质的一级结构的测定。蛋白质的一级结构(Primary structure)包括组成蛋白质的多肽链数目。很多场合多肽和蛋白质可以等同使用。多肽链的氨基酸顺序,它是蛋白质生物功能的基础。 蛋白质氨基酸顺序的测定是蛋白质化学研究的基础。自从1953年F.San
蛋白上游研究之Sanger测序技术的发展史
DNA测序技术是分子生物学研究中最常用的技术,它的出现极大地推动了生物学的发展。成熟的DNA测序技术始于20世纪70年代中期。1977年Maxam和Gilbert报道了通过化学降解测定DNA序列的方法。同一时期,Sanger发明了双脱氧链终止法。20世纪90年代初出现的荧光自动测序技术将DNA测序带
DNA测序技术
目前还有一种基于半导体芯片的新一代革命性测序技术——Ion Torrent。该技术使用了一种布满小孔的高密度半导体芯片, 一个小孔就是一个测序反应池。当DNA聚合酶把核苷酸聚合到延伸中的DNA链上时,会释放出一个氢离子,反应池中的PH发生改变,位于池下的离子感受器感受到H+离子信号,H+离子信号再直
DNA测序技术的测序的规律
生成互相独立的若干组带放射性标记的寡核苷酸,每组寡核苷酸都有固定的起点,但却随机终止于特定的一种或者多种残基上。由于DNA上的每一个碱基出现在可变终止端的机会均等,因此上述每一组产物都是一些寡核苷酸混合物,这些寡核苷酸的长度由某一种特定碱基在原DNA全片段上的位置所决定。在可以区分长度仅差一个核苷酸
测序技术及测序仪器的比较
自sanger测序技术发明以来,经人类基因组计划的促进,测序技术有了跨越式的发展,以实验方法与实验仪器的改进为标志,测序技术经历了三代的发展,同时测序技术向着高通量测序,单分子测序,低价格测序的方向发展,目前测序技术已成为分子生物学实验中的重要的实验手段。本文主要简单回溯了测序技术的发展历史,介绍了
蛋白质测序仪
主要用途: 测量蛋白质或多肽一级结构的氨基酸序列应用于生物、化学、医学等领域的结构分析结构预测,药物设计等 仪器类别: 0303090701 /仪器仪表 /成份分析仪器 /蛋白质顺序分析仪 指标信息: 重复产率97% 最初产率60% 最灵敏检测量5pmol 适于各种方法制备
蛋白质质谱测序技术和仪器国产化
2015年10月17日,第二届全国质谱分析学术报告会在浙江大学紫荆港校区体育馆盛大开幕,在5位院士的精彩报告后,多位学者做了高水平的大会报告。 复旦大学杨芃原教授:蛋白质质谱测序技术和仪器国产化 复旦大学教授杨芃原教授做题为《蛋白质质谱测序技术和仪器国产化》的报告。蛋白质质谱测
高通量测序技术——第二代测序技术
高通量测序技术是对传统测序一次革命性的改变,一次对几十万到几百万条DNA分子进行序列测定,因此在有些文献中称其为下一代测序技术(next generation sequencing)足见其划时代的改变,同时高通量测序使得对一个物种的转录组和基因组进行细致全貌的分析成为可能,所以又被称为深度测序(de
DNA测序技术的测序反应的介绍
1. 对于每组测序反应,标记四个0.5ml eppendorf管(G、A、T、C)。每管加入2ml适当的d/ddNTP混合物(d/ddNTP Mix)。各加入1滴(约20ml)矿物油,盖上盖子保存于冰上或4℃备用。 2. 对于每组四个测序反应,在一个eppendorf管中混合以下试剂: (1
DNA测序技术自动测序法介绍
自动测序法基因分析仪(即DNA测序仪),采用毛细管电泳技术取代传统的聚丙烯酰胺平板电泳,应用该公司ZL的四色荧光染料标记的ddNTP(标记终止物法),因此通过单引物PCR测序反应,生成的PCR产物则是相差1个碱基的3'末端为4种不同荧光染料的单链DNA混合物,使得四种荧光染料的测序PCR产物
DNA测序技术的技术原理
化学修饰法测序原理化学试剂处理末段DNA片段,造成碱基的特异性切割,产生一组具有各种不同长度的DNA链的反应混合物,经凝胶电泳分离。化学切割反应:包括碱基的修饰,修饰的碱基从其糖环上转移出去在失去碱基的糖环处DNA断裂。Sanger法测序的原理就是利用一种DNA聚合酶来延伸结合在待定序列模板上的引物
基因测序技术原理
基因测序技术能锁定个人病变基因,提前预防和治疗。 自上世纪90年代初,学界开始涉足“人类基因组计划”。而传统的测序方式是利用光学测序技术。用不同颜色的荧光标记四种不同的碱基,然后用激光光源去捕捉荧光信号从而获得待测基因的序列信息。 虽然这种方法检测可靠,但是价格不菲也是有目共睹的,一台仪器的
关注前沿测序技术
而在蛋白质测序方面,《The Scientists》杂志回顾了一下研究进展,文中提到,上个世纪70年代的生化学家在钻研细胞信号传递、循环和粘附的蛋白化学特征时遇到两个难题:高精度纯化蛋白和提纯低分子量蛋白。 比如,在人类破译干扰素结构之前的20多年中,很难对其进行纯化;血管紧缩素II(angi
高通量测序技术
没有测序的癌症诊断是不完整的,完整的癌症诊断应该包括一系列基于细胞遗传学技术、荧光原位杂交技术、标准分子技术以及NGS的预后与预测性分析。对于早期癌症患者来说,NGS序列分析在多种癌症的筛查技术中具有不容忽视的代表性;而对于晚期癌症患者,大量的侵入性测试往往只能筛查出少数几个药物靶点。 随
基因测序技术(一)
什么是基因测序 基因组携带了个体的全部遗传信息,基因测序能够加深对疾病尤其是恶性肿瘤的分子机制理解,在诊断与治疗方面都发挥着重要作用。从1953年沃森和克里克发现DNA分子双螺旋结构到2001年首个人类基因组图谱的绘制完成,越来越多的人们意识到基因测序在生物医学中的重要作用。 所谓基因测
DNA测序技术综述
1977年,Sanger团队完成人类历史上第一个基因组序列噬菌体X174测序,并在3年后,成为“两度”获得诺贝尔化学奖的人(前一次是1958年)。Sanger测序技术诞生,让DNA片段的测序成为现实,此后这一技术独领风骚20多年。再后来的20年里,二代测序走向成熟、三代测序崭露头角,DNA测序技术以
基因测序技术原理
基因测序技术能锁定个人病变基因,提前预防和治疗。[2] 自上世纪90年代初,学界开始涉足“人类基因组计划”。而传统的测序方式是利用光学测序技术。用不同颜色的荧光标记四种不同的碱基,然后用激光光源去捕捉荧光信号从而获得待测基因的序列信息。[2] 虽然这种方法检测可靠,但是价格不菲也是有目共睹的,一台仪
纳米孔测序技术
测序长度和准确率的快速提升使得纳米孔测序有望颠覆DNA测序市场。纽约威尔康奈尔医学院的计算生物学家Christopher Mason喜欢在会议上表演一个“绝活”:他和同事先从志愿者手机上收集DNA样本,然后就能在一个小时内现场进行谱系分析,甚至叙述志愿者一天的生活细节。“我们能从留在手机上的DNA信
双RNA测序技术
在发表于《自然》(Nature)杂志上的一篇研究论文中, 由来自德国、奥地利和美国的研究人员组成的一个研究小组发现,采用一种允许在感染过程中同时研究细菌与宿主小RNA的新技术,可以揭示出两者转录谱的改变。该研究小组描绘了他们的技术、该技术如何更多地帮助了解细菌感染机制,以及在研究中获得的重要发现
基因测序技术展望
DNA测序技术从最开始的简单检测逐渐演变到今天的高通量测序,在过去的30年里,数据生成呈指数增长,而过去10年里,由于高通量测序,数据产生量呈超指数增长。并且,基因测序产生的数据已经在基础生物学等诸多领域产生了革命性的影响,应用范围渗透到考古学、刑事调查和产前诊断等多个行业。那么,未来基因测序会取得