PNAS阐述线粒体疾病新理论
最近,由一位先驱科学家开展的新研究,详细阐述了线粒体功能的微小变化,如何能导致一系列常见的代谢性和退行性疾病。线粒体是我们细胞内产生能量的微小结构,含有自己的DNA。相关研究结果发表在最近的《PNAS》杂志。 这项新研究表明,每个细胞中几千个线粒体DNA内的突变体和正常线粒体DNA比率如果发生微小变化,会导致核DNA内许多基因的表达发生突然的变化。 本研究负责人、费城儿童医院线粒体和表观医学中心主任Douglas C. Wallace博士指出:“这些研究表明,相同线粒体DNA突变的细胞比例如果发生微小变化,可导致各种不同的临床表现,这些研究向传统模型——一个单个突变导致一种单一的疾病——发出了挑战。该研究对理解代谢性和神经退行性疾病,如糖尿病、阿尔茨海默氏病、帕金森氏病和亨廷顿舞蹈病以及人类衰老,提供了关键的见解。” Wallace说:“线粒体DNA突变水平的小幅增加引起的核基因表达的离散变化,类似于给冰加热所造成的相......阅读全文
线粒体基因
线粒体基因:mtDNA,线状、环状,能单独复制,同时受核基因控制。哺乳动物:无内含子,有重叠基因突变率高。
Nat-Genet:MICU1基因突变导致线粒体肌病
近日,英国利兹大学专家发现一种新的基因突变,将有助于医生更准确诊断儿童特定类型的大脑疾病和肌肉疾病。 线粒体肌病会导致肌肉无力,运动障碍和学习困难,在英国,影响超过70,000人。新研究第一次揭示一个特定基因MICU1的突变与肌病密切相关。这一发现便于更好的了解疾病的遗传原因。 来自
线粒体DNA突变与母亲年龄
一项研究探索了与诸如癌症和糖尿病等疾病有联系的遗传突变的母亲到子女的传播。细胞的代谢动力工厂线粒体拥有自己的从母亲遗传来的基因组,有时候在一个人身上可能含有多个线粒体DNA(mtDNA)类型,这种现象被称为异质性。Kateryna D. Makova及其同事探索了异质性在一个人类人群中的普遍
国外学者发现线粒体基因突变与疾病之间的关系
线粒体是一种具有自身独有DNA的细胞器,它们在能量供应中扮演的角色使得它们对氧化应激伤害很敏感,包括具有损伤DNA功能的加合物的形成。图片来源:Vincenzo Sorrentino, Mario Romani, Francesca Potenza/EPFL. 其中一种叫做M1dG的加合物就是
线粒体基因的定义
线粒体基因:mtDNA,线状、环状,能单独复制,同时受核基因控制。哺乳动物:无内含子,有重叠基因突变率高。
线粒体基因的合成原理
线粒体基因组能够单独进行复制、转录及合成蛋白质,但这并不意味着线粒体基因组的遗传完全不受核基因的控制。线粒体自身结构和生命活动都需要核基因的参与并受其控制,说明真核细胞内尽管存在两个遗传系统,一个在细胞核内,一个在细胞质内,各自合成一些蛋白质和基因产物,造成了细胞核和细胞质对遗传的相互作用;但是,核
线粒体基因何时丢失的?
生物学领域的一个巨大秘密,是细胞内线粒体拥有自己的遗传基因。为了解释这个秘密,有一个关于线粒体的起源的假说,就是内共生学说,认为线粒体来源于细菌,即一种原始细菌被真核生物吞噬后,在长期的共生过程中,通过演变,形成了线粒体。该学说认为,线粒体祖先原线粒体是一种可进行三羧酸循环和电子传递的革兰氏阴性
线粒体基因组的简介
线粒体是真核细胞的一种细胞器,有它自己的基因组,编码细胞器的一些蛋白质。除了少数低等真核生物的线粒体基因组是线状DNA分子外(如纤毛原生动物Tetrahymena pyniform和Paramecium aurelia以及绿藻Clam ydoomonas rein—hardtia 等),一般都是
线粒体基因组的简介
线粒体是真核细胞的一种细胞器,有它自己的基因组,编码细胞器的一些蛋白质。除了少数低等真核生物的线粒体基因组是线状DNA分子外(如纤毛原生动物Tetrahymena pyniform和Paramecium aurelia以及绿藻Clam ydoomonas rein—hardtia 等),一般都是一个
线粒体基因组的原理
线粒体基因组能够单独进行复制、转录及合成蛋白质,但这并不意味着线粒体基因组的遗传完全不受核基因的控制。线粒体自身结构和生命活动都需要核基因的参与并受其控制,说明真核细胞内尽管存在两个遗传系统,一个在细胞核内,一个在细胞质内,各自合成一些蛋白质和基因产物,造成了细胞核和细胞质对遗传的相互作用;但是
线粒体基因组的简介
线粒体是真核细胞的一种细胞器,有它自己的基因组,编码细胞器的一些蛋白质。除了少数低等真核生物的线粒体基因组是线状DNA分子外(如纤毛原生动物Tetrahymena pyniform和Paramecium aurelia以及绿藻Clam ydoomonas rein—hardtia 等),一般都是
线粒体基因组的概念
线粒体是真核细胞的一种细胞器,有它自己的基因组,这些基因组统称为线粒体基因组。线粒体内的DNA,可参与蛋白质的合成,转录,与复制,具有较高的研究价值。
基因突变
基因组DNA分子发生的突然的、可遗传的变异现象叫做基因突变。基因突变是变异的主要来源,也是生物进化发展的根本原因之一。从分子水平上看,基因突变是指基因在结构上发生碱基对组成或排列顺序的改变。基因虽然十分稳定,能在细胞分裂时精确地复制自己,但这种稳定性是相对的。在一定的条件下基因也可以从原来的存在
线粒体基因组的原理简介
线粒体基因组能够单独进行复制、转录及合成蛋白质,但这并不意味着线粒体基因组的遗传完全不受核基因的控制。线粒体自身结构和生命活动都需要核基因的参与并受其控制,说明真核细胞内尽管存在两个遗传系统,一个在细胞核内,一个在细胞质内,各自合成一些蛋白质和基因产物,造成了细胞核和细胞质对遗传的相互作用;但是
测定线粒体基因表达怎么做
亲缘鉴定是否可以用线粒体?首先你要知道什么是线粒体,其次你要了解线粒体是怎么遗传的,应该初中就会讲。那么结论是线粒体用于母系。。。就是外孙女-妈妈-外婆-外婆的妈妈。只要来自同一个母亲就可以用。但是线粒体的检测目前没有一个标准,就是所选取的检测区域存在者争议,所以可以做为一个参考。
线粒体脑肌病的基因遗传
遗传型中包括核DNA(nDNA)缺陷和线粒体DNA(mt DNA)缺陷: (1) nDNA缺陷:底物传递障碍,即肉毒碱原发或继发缺失,脂质沉积病;底物利用障碍,如脂肪酸和丙酮酸代谢异常;三羧酸循环障碍,如延胡索酸酶缺乏、二氢脂脱氢酶缺乏、琥珀酸脱氢酶缺乏以及乌头酸酶联合缺陷等;氧化磷酸化偶联障碍
发现线粒体DNA突变引发肠衰老机制与逆转方案
原文地址:http://news.sciencenet.cn/htmlnews/2024/1/516707.shtm
基因定点突变知识
实验原理基因定点突变是指通过聚合酶链式反应(PCR)等方法改变目的基因的序列,包括碱基的插入、缺失、点突变等。基因定点突变是基因研究中比较常用的方法,可以短时间内研究目的DNA所表达的目的蛋白的性状及表征。定点突变需要设计特定的突变引物。引物长度一般为25-45 bp,建议选择30-35bp长度
基因突变的诱变机制自发突变
所谓自发突变是指未经诱变剂处理而出现的突变。从诱变机制的研究结果来看,自发突变的原因不外乎以下几种。①背景辐射和环境诱变。短波辐射在宇宙中随时都有,实验说明辐射的诱变作用不存在阈效应,即任何微弱剂量的辐射都具有某种程度的诱变作用,因此自发突变中可能有一小部分是短波辐射所诱发的突变,有人估计果蝇的这部
基因突变的诱变机制移码突变
诱发移码突变的诱变剂种类较少,主要是吖啶类染料(图6)。这些染料分子能够嵌入DNA分子中,从而使DNA复制发生差错而造成移码突变。
基因重组和基因突变区别
1、基因突变是基因的从无到有,突变产生新基因。基因重组是原有基因的重新组合,产生的是新基因型。2、发生的时间:基因重组发生的时期是:减数分裂中四分体时期同源染色体的非姐妹染色单体之间的局部交换和减数diyi次分裂后期非同源染色体的而重新组合;基因突变发生的时间是在有丝分裂和减数分裂的间期。
基因治疗线粒体肌病的简介
基因治疗策略包括降低突变型mtDNA/野生型mtDNA的比例、使用错位表达及异质表达、输入其他同源性基因以及利用限制性内切酶修复突变型mtDNA等。如用人胞质体(含正常线粒体无细胞核的细胞)对缺陷细胞(含缺陷mtRNA,呼吸链功能减退的细胞)进行基因补救治疗,能成功地使缺陷细胞呼吸链功能恢复正常
线粒体核糖体的基因与表达
线粒体核糖体各组分由分别属于细胞核与细胞质的两个基因组编码,所以线粒体核糖体需要两个基因组共同表达来形成。哺乳动物细胞核中编码线粒体核糖体各组分的基因比其编码80S核糖体的基因以更快的速度进化着。 [10-11] 线粒体核糖体中的所有核糖体蛋白质皆由核基因编码,并由80S核糖体合成。 [12]
线粒体基因组的DNA相关介绍
与细胞核DNA相比,mtDNA作为生物体种系发生的“分子钟”(molecular clock)有其自身的优点:①突变率高,是核DNA的10倍左右,因此即使是在近期内趋异的物种之间也会很快地积累大量的核苷酸置换,可以进行比较分析;②因为精子的细胞质极少,子代的mtDNA基本上都是来自卵细胞,所以m
线粒体基因组的基本性质
与核基因组相比,线粒体基因组有如下性质:所有的基因都位于一个单一的环状DNA分子上。遗传物质不为核膜所包被。DNA不为蛋白质所压缩。基因组没有包含那么多非编码区域(调控区域或“内含子”)。一些密码子与通用密码子不同。相反,与一些紫色非硫细菌相似。一些碱基为两个不同基因的一部分(重叠基因):某碱基作为
线粒体基因组的疾病关系简介
人线粒体DNA(mtDNA),共包含37个基因,这37个基因中有22个编码转移核糖核酸(tRNA)、2个编码核糖体核糖核酸(12S和16S rRNA),13个编码多肽。 对于可疑线粒体病的患者来说,理想的遗传学诊断方法是发现导致线粒体结构和功能缺陷的相关基因突变。这些基因突变可能在mtDNA上
线粒体基因组的大小解释
已知的是哺乳动物的线粒体基因组最小,果蝇和蛙的稍大,酵母的更大,而植物的线粒体基因组最大。人、小鼠和牛的线粒体基因组全序列已经测定,都是16.5 kb左右。每个细胞里有成千上万份线粒体基因组DNA拷贝。果蝇和蛙的细胞里有多少个线粒体以及每个线粒体有多少份DNA拷贝,还没有准确的数字。估计线粒体DNA
基因突变-萨摩耶牙疼
SCL24A4基因的突变,能导致萨摩耶牙釉质发育不良。美国加州大学伴侣动物健康中心科学家近日将相关论文刊登于开放获取期刊《犬类遗传学与流行病学》。 携带这一突变的狗狗牙齿会褪色、变形,并可能牙齿脱落、牙齿严重侵蚀和牙根感染。于是,研究人员设计了一个检测,让狗育种者可以在育种过程中有选择性地剔
egfr基因突变阳性
说明EGFR基因的第19外显子有缺失。这通常意味着这是导致癌症的原因,可以适用于EGFR-TKI类靶向药治疗(如吉非替尼、厄洛替尼等)。
吸烟导致基因突变
吸烟有害健康是不争事实,然而,香烟如何对人体造成伤害?英国研究人员发现,香烟中的致癌物直接导致脱氧核糖核酸(DNA)突变,估计烟民平均每吸15支烟,DNA就发生一次突变。 研究结果刊载于最新一期英国《自然》杂志网络版。 译癌症基因 英国韦尔科姆基金会桑格研究所分别对肺癌患