WatersZQ质谱固障排除
ZQ质谱固障排除......阅读全文
Waters-ZQ质谱固障排除
ZQ质谱固障排除
岛津发布新款三重四极杆液质联用仪LCMS8060NX
Nexera LC-40+LCMS-8060NX 6月1日,岛津公司发布LCMS-8060NX三重四极杆液相色谱质谱联用仪。 LCMS-8060NX是岛津三重四极杆液质联用仪旗舰机型的巅峰之作,在实现优异的灵敏度和分析速度的同时,进一步提升了仪器的稳定性、耐用性和操作性。 近年来,随着对降低运行
三重四极杆液质联用系统简介
联机的关键是适用接口的开发,必须在试样组分进入离子源前去除溶剂,目前,多采用履带式加热传送带。不足之处在于:①沸点与溶剂相近或低的组分不能测;②某种意义上失去了HPLC分离热不稳定性物质的优点;③溶剂很难挥发尽,本底效应高,不利于分辨。因此,LC/MS正处于发展阶段,应用还不够普遍。 液相色谱
岛津在Pittcon-2011上展出LCMS8030三重四极杆液质联用仪
为了提高实验室的效率,研究人员在不断地挑战如何以更高的灵敏度在每天数百个测试样本测试中,检测出更多的目标分析物。为了迎接这一挑战,岛津公司开发了LCMS-8030三重四极杆液质联用仪,它结合了三重四极质谱无与伦比的速度,为现有的超高效液相色谱仪系统提供了理想的性能提升。 LCMS-8
三重串联四极杆液质联用系统简介
三重串联四极杆液质联用系统拥有出色的设计,是超高压液相色谱(UHPLC)的最佳质谱检测器,同时它也能与液相色谱-芯片联用以获得最高的灵敏度。 高性能的MassHunter软件; 自动进行质谱参数优化的MassHunter Optimizer 软件; 动态多反应监测最多可以同时检测400
液质联用故障排除方法
液相色谱-质谱联用(LC-MS)是以液相色谱为分离系统,质谱为检测系统的常见分析技术。样品在质谱部分和流动相分离,被离子化后,经质谱的质量分析器将离子碎片按质量数分开,经检测器得到质谱图。液质联用体现了色谱和质谱优势的互补,将色谱对复杂样品的高分离能力,与MS具有高选择性、高灵敏度及能够提供相对分子
EVOQ三重四极杆液质联用仪的特点
EVOQ三重四极杆液质联用仪 (1)高效的真空隔层(VIP)加热ESI和APCI喷针 (2)优异的高灵敏度MRM,无透镜质谱检测系统 (3)适用面广、免调谐的交错式四级杆设计的双重离子漏斗 (4)可提供高性能的QubeTM 和超高性能的EliteTM 两种型号 (5)HPLC和UHPL
岛津公司推出三重四极杆液质联用仪
岛津公司隆重推出三重四极杆液相色谱质谱联用仪 无论是食品中残留农药、兽药等极微量多组分的定性和定量,还是在新药开发过程中以筛选新药候选化合物为目的的药代动力学实验中,都要求迅速获得庞大数量样品的高可靠性分析结果。为满足这一需求,岛津制作所开
三重串联四极杆液质联用系统主要特点
三重串联四极杆液质联用系统主要特点 内置调谐标样可进行全自动调谐及质量轴校正; ZL的LENS2离子光学系统,提高灵敏度并具超强抗污染特点; 独特的双曲面加热四极杆技术,确保质量轴高度稳定以及超强抗污染能力; 高压线性碰撞反应池技术,采集速度更快且有效消除“记忆效应” ; 独特的双
岛津举办三重四极杆液质联用推介会
岛津三重四极杆液质联用仪上海专家推介会成功举办 在食品中农药残留以及非法添加物测定、药物代谢产物定量、环境中污染物的测定等复杂基质样品的微量分析中,【三重四极杆质量分析】已成为必不可少的分析手段。近年来,实现快速化高分离
三重串联四极杆液质联用系统技术参数
三重串联四极杆液质联用系统技术参数 fg水平灵敏度; 极佳的重现性和稳定性; 6*10^6的动态范围; 高通量MRM 分析(一次进样>10,000组); DMRM免时间窗口分析; 快速正负切换(最快达30 ms); 支持 Agilent ZLJet Stream 技术及HP
串联四极杆液质联用仪可有效预防解决问题
串联四极杆液质联用仪喷射流离子聚焦离子化技术,在提高雾化温度的同时,提高了电场密度,串联四极杆液质联用仪使离子化效率得以显著提升,并有效屏蔽基质干扰;此外,在高速鞘气流的作用下,离子云密度明显增加,进而提高质谱取样效率;这些技术的进步,从离子生成和传输过程提高了质谱检测的灵敏度;同时,该离子源可
三重串联四极杆液质联用仪主要特点
三重串联四极杆液质联用仪主要特点 1. 灵敏度 喷射流离子聚焦离子化技术,在提高雾化温度的同时,提高了电场密度,使离子化效率得以显著提升,并有效屏蔽基质干扰;此外,在高速鞘气流的作用下,离子云密度明显增加,进而提高质谱取样效率;这些技术的进步,从离子生成和传输过程提高了质谱检测的灵敏度;同时
液质联用仪的验收要求(AB三重四极杆)
液质联用仪的验收要求(AB三重四极杆)灵敏度,必须在单位质量分辨率下灵敏度是用信噪比来表示的,S/N,信噪比的计算又有峰-峰比和RMS之分(RMS计算的信噪比一般要比峰-峰比计算的高5~10倍) RMS是在待测峰周围,找一段质量范围,然后做均方根平均,作为噪音高度(强度)。再拿待测峰的高度除以平均高
液质联用仪常见故障排除
LC/MS故障排除症状类型解决方案无峰雾化器喷雾保证毛细管电压设置正确保证LC/MSD 调谐正确保证LC/MSD 检测器压力在正常范围检查干燥气流量和温度确保碰撞诱导解离电压设置正确质量准确度差重新校正质量轴确定调谐用离子,估计样品离子的质量范围并显示强稳定的信号信号低检查溶液化学性质,确
液质联用仪的故障排除方法
液相色谱-质谱联用(LC-MS)是以液相色谱为分离系统,质谱为检测系统的常见分析技术。样品在质谱部分和流动相分离,被离子化后,经质谱的质量分析器将离子碎片按质量数分开,经检测器得到质谱图。 液质联用体现了色谱和质谱优势的互补,将色谱对复杂样品的高分离能力,与MS具有高选择性、高灵敏度及能
安捷伦科技推出创新三重串联四极杆液/质联用系统
安捷伦科技推出创新三重串联四极杆液/质联用系统,灵敏度突破性提高十倍 iFunnelZL技术将检测限降至 Zeptomole 水平 2010 年 5 月 24 日安捷伦科技公司(纽约证交所:A)在美国犹他州盐湖城2010 ASMS上隆重推出了基于 iFunnel 技术的 6490 三重串联四极
液相色谱三重四极杆串联质谱联用仪简介
液相色谱三重四极杆串联质谱联用仪是一种用于食品科学技术领域的分析仪器,于2018年12月18日启用。 技术指标 灵敏度:ESI灵敏度:1pg利血平,m/z195(子离子)、m/z609(母离子),信噪比 S/N≥ 300000;质量范围:m/z,5-2020amu;稳定性:≤0.1 amu/
串联四级杆液质联用仪
串联四级杆液质联用仪是一种用于基础医学、药学、中医学与中药学领域的分析仪器,于2013年7月16日启用。 技术指标 1.灵敏度 1 pg 利血平, LC/MS 400 µL/mins/n 750:1 2.分辨率 三种设定:0.7u, 1.2u, 2.5u 3.扫描速度 5,200u/sec
Waters液质联用方法开发
是Waters总结的,关于最初使用LCMS的一些基本原则,可以适用于任何一套液质联用。非常简洁明了,如果你初次使用LCMS,看一看一定会有很多收获的。 Waters液质联用方法开发
四极杆质谱原理
四极杆(Quadrupole):由四根带有直流电压(DC)和叠加的射频电压(RF)的准确平行杆构成,相对的一对电极是等电位的,两对电极之间电位相反。当一组质荷比不同的离子进入由DC和RF组成的电场时,只有满足特定条件的离子作稳定振荡通过四极杆,到达监测器而被检测。通过扫描RF场可以获得质谱图。四极杆
常见的液质联用故障排除方法汇总
液相色谱-质谱联用(LC-MS)是以液相色谱为分离系统,质谱为检测系统的常见分析技术。样品在质谱部分和流动相分离,被离子化后,经质谱的质量分析器将离子碎片按质量数分开,经检测器得到质谱图。液质联用体现了色谱和质谱优势的互补,将色谱对复杂样品的高分离能力,与MS具有高选择性、高灵敏度及能够提供相对分子
常见的液质联用故障排除方法汇总
常见的液质联用故障排除方法汇总1. 基线有杂峰,且难以消除可能的原因:LC-MS被污染了故障排除及解决方案:a:杂质离子大部分来自于流动相,任何厂家、任何纯度的试剂都可能带有杂质离子,因此可以考虑用不同批次、不同品牌的试剂作为流动相进行排除。另外,在使用过程中,流动相不能使用多天,需要定期更换。b
常见的液质联用故障排除方法汇总!
液相色谱-质谱联用(LC-MS)是以液相色谱为分离系统,质谱为检测系统的常见分析技术。样品在质谱部分和流动相分离,被离子化后,经质谱的质量分析器将离子碎片按质量数分开,经检测器得到质谱图。液质联用体现了色谱和质谱优势的互补,将色谱对复杂样品的高分离能力,与MS具有高选择性、高灵敏度及能够提供相对分子
Thermo串联四极杆液质TSQ-Quantum讲义
工程师常给用户讲的。包括Surveyor液相和TSQ Quantum,是PPT格式的。 Thermo串联四极杆液质TSQ Quantum讲义
三重四极杆与其他液相/质谱联用技术的比较
三重四极杆与其他液相/质谱联用技术的比较在质谱应用领域里三重四极杆是最灵敏和定量重现性最好的仪器:三重四极杆在执行中性丢失扫描和母子扫描模式具有最好的灵敏性和准确性。三重四极杆不是最好的获取质谱图的仪器,平行测量的质谱系统会更好些;三重四极杆质谱/质谱不如离子阱质谱仪( TRAPS )灵敏(定性);
超高效液相色谱串联三重四极杆质谱联用仪
超高效液相色谱串联三重四极杆质谱联用仪是一种用于基础医学、药学、材料科学、环境科学技术及资源科学技术领域的分析仪器,于2017年12月18日启用。 主要功能 1. 在小分子上的应用主要包括环境和食品安全(目标,非目标化合物筛选和测定);药物研发(产品成分分析、药物动力学、药物代谢);生物化学