离子液体极性研究取得新进展
The optimized geometries of six ILs from B3LYP/6-31+g (d,p). (a) [EMIm][AC], (b) [EMIm][Cl], (c) [EMIm][PF6], (d) [HOEMIm][AC], (e) [HOEMIm][Cl], and (f) [HOEMIm][PF6] (H-bond is indicated as dashed line) 中国科学院兰州化学物理研究所绿色催化课题组在离子液体结构与溶剂极性的相关研究方面取得新进展。最新成果发表在近期出版的《物理化学B》(The Journal of Physical Chemistry B, 2010, 114 (11), pp 3912–3920. DOI: 10.1021/jp911430t)。 该课题组揭示了基于咪唑的羟基离子液体的独特的极性特征,发现羟基对离子液体的极性呈现出明显的......阅读全文
液体制剂常用的半极性溶剂有哪些?
1.乙醇:没有特殊说明时,乙醇指95%(V/V)乙醇,可与水、甘油、丙二醇等溶剂任意比例混合,能溶解大部分有机药物和药材中的有效成分,如生物碱及其盐类、挥发油、树脂、鞣质、有机酸和色素等。20%以上的乙醇即有防腐作用。但乙醇有一定的生理活性,有易挥发、易燃烧等缺点。2.丙二醇:药用一般为l,2-丙二
离子液体极性研究取得新进展
The optimized geometries of six ILs from B3LYP/6-31+g (d,p). (a) [EMIm][AC], (b) [EMIm][Cl], (c) [EMIm][PF6], (d) [HOEMIm][AC], (e) [HOEMIm]
什么是极性溶剂?
极性溶剂如水可以溶剂极性的化合物,非极性药物如苯,可以溶解非极性化合物。非极性溶剂的概念及定义是指介电常数低的一类溶剂,又称惰性溶剂。这类溶剂既不进行质子自递反应,也不与溶质发生溶剂化作用。多是饱和烃类或苯等一类化合物。如苯、四氯化碳、二氯乙烷等。对于H2O,虽然与CO2有相同类型的分子式,也同样有
离子液体能否取代有机溶剂?(二)
据文献记载,2005年第一次ILs作为吸附剂涂层应用于顶空进样的SPME。表1简单地描述了本文提及的研究。基于 [C8MIM][PF6]的IL被用于油漆中苯、甲苯、乙苯以及二甲苯的提取。相对于之前商业化的PDMS涂层——poly(dimethylsiloxane) ,基于IL的涂层
离子液体能否取代有机溶剂?(一)
本文介绍了离子液体(简称ILs)以及聚合离子液体(PILs)在固相微萃取(SPME)、分散基质液液萃取(DLLME)中的应用。由于其良好的选择性、环保性,相信未来,离子液体的应用将越来越广泛,甚至会取代有机溶剂。 在过去的十年中,离子液体与聚合离子液体在许多科学、工程领域得到广泛的研究与应
常见溶剂的极性大小顺序
水(H2O)>甲醇(MeOH)>乙醇(EtOH)>丙酮(Me2CO)>正丁醇(n-BuOH)>乙酸乙酯(EtOAc)>乙醚(Et2O)>氯仿(CHCl3)>苯(C6H6)>四氯化碳(CCl4)>正己烷≈石油醚(Pet.et)。 其中甲醇、乙醇和丙酮三种溶剂能与水互溶,正丁醇是所有与水不相容(分层)的
如何判断溶剂极性的大小
根据相似相溶原理,在看有机物的结构是否对称,若对称基本上成非极性的,分子的极性(永久烷极)是由其中正、负电荷的“重心”是否重合所引起的。下面具体介绍一下:1、烯烃中,乙烯分子无极性,丙烯分子,1—丁烯分子均不以双键对称,μ分别为0.336D、0.34D。2—丁烷,顺—2—丁烯的μ=0.33D,反—2
常见溶剂的极性大小顺序
水(H2O)>甲醇(MeOH)>乙醇(EtOH)>丙酮(Me2CO)>正丁醇(n-BuOH)>乙酸乙酯(EtOAc)>乙醚(Et2O)>氯仿(CHCl3)>苯(C6H6)>四氯化碳(CCl4)>正己烷≈石油醚(Pet.et)。 其中甲醇、乙醇和丙酮三种溶剂能与水互溶,正丁醇是所有与水不相容(分层)的
常见溶剂的极性大小顺序
水(H2O)>甲醇(MeOH)>乙醇(EtOH)>丙酮(Me2CO)>正丁醇(n-BuOH)>乙酸乙酯(EtOAc)>乙醚(Et2O)>氯仿(CHCl3)>苯(C6H6)>四氯化碳(CCl4)>正己烷≈石油醚(Pet.et)。 其中甲醇、乙醇和丙酮三种溶剂能与水互溶,正丁醇是所有与水不相容(分层)的
常见有机溶剂极性表
有机溶剂是能溶解一些不溶于水的物质的一类有机化合物,其特点是在常温常压下呈液态,具有较大的挥发性,在溶解过程中,溶质与溶剂的性质均无改变。 有机溶剂的种类较多,按其化学结构可分为10大类: 1、芳香烃类:苯、甲苯、二甲苯等; 2、脂肪烃类:戊烷、己烷、辛烷等; 3、脂环烃类:
有机溶剂极性排列顺序
常用溶剂的极性顺序:水(最大)>甲酰胺>三氟乙酸>DMSO>乙腈>DMF>六甲基磷酰胺>甲醇>乙醇>乙酸>异丙醇>吡啶>四甲基乙二胺>丙酮>三乙胺>正丁醇>二氧六环>四氢呋喃>甲酸甲酯>三丁胺>甲乙酮>乙酸乙酯>三辛胺>碳酸二甲酯>乙醚> 异丙醚>正丁醚>三氯乙烯>二苯醚>二氯甲烷>氯仿>二氯乙烷>
常见溶剂的极性大小顺序
水(H2O)>甲醇(MeOH)>乙醇(EtOH)>丙酮(Me2CO)>正丁醇(n-BuOH)>乙酸乙酯(EtOAc)>乙醚(Et2O)>氯仿(CHCl3)>苯(C6H6)>四氯化碳(CCl4)>正己烷≈石油醚(Pet.et)。 其中甲醇、乙醇和丙酮三种溶剂能与水互溶,正丁醇是所有与水不相容(分层)的
常见溶剂的极性大小顺序
水(H2O)>甲醇(MeOH)>乙醇(EtOH)>丙酮(Me2CO)>正丁醇(n-BuOH)>乙酸乙酯(EtOAc)>乙醚(Et2O)>氯仿(CHCl3)>苯(C6H6)>四氯化碳(CCl4)>正己烷≈石油醚(Pet.et)。 其中甲醇、乙醇和丙酮三种溶剂能与水互溶,正丁醇是所有与水不相容(分层)的
用于单离子导体和聚(溶剂化离子液体)分子可调聚阴离子
用于单离子导体和聚(溶剂化离子液体)的分子可调聚阴离子 便携式电子设备和电动汽车的发展对下一代高性能储能装置提出了新的要求。合适的电解质对于提高储能装置的能量密度、输出功率、循环寿命与使用安全性均有重要作用。目前广泛使用的有无机(陶瓷)固态电解质和非水(有机)液体电解质,其中前者为单离子导体,
化学溶剂极性的大小排列
主要的有机试剂的极性大小顺序:水(最大) > 甲酰胺> 乙腈> 甲醇> 乙醇> 丙醇> 丙酮> 二氧六环> 四氢呋喃> 甲乙酮> 正丁醇> 乙酸乙酯> 乙醚> 异丙醚> 二氯甲烷>氯仿>溴乙烷>苯>四氯化碳>二硫化碳>环己烷>己烷>煤油(最小)常用的试剂的极性具体是多少也是可以查到的,下图是常见有
离子液体通过定向溶剂萃取实现高效低温海水淡化
在全球范围内,饮用水资源的短缺问题越发严重。地区性的长期干旱及区域性的工业和住宅污染也加剧了这一日益严重的危机。考虑到海洋和地下盐水含水量占全球水的97.5%,淡化海水是满足淡水需求最有前途的手段。尽管基于膜的脱盐工艺,如反渗透(RO)已引起了广泛关注,但对电力的高需求使其在低资源环境中的应
逆流色谱法强极性溶剂体系简介
正丁醇体系:该体系的基本两相由正丁醇和水组成,可根据需要在上下两相中加入不同体积比且极性位于正丁醇和水之间的惰性溶剂来调节溶剂系统的极性。一般加入甲醇、乙醇、丙酮作为调节剂,组成三元溶剂体系。该体系一般不是很常用。 醋酸乙酯体系:该体系是HSCCC分离常用的体系之一,基本两相由醋酸乙酯和水组成
逆流色谱法中等极性溶剂体系简介
甲基叔丁基醚体系:该体系的基本两相由甲基叔丁基醚和水组成,可根据需要在上下两相中加入不同体积比且极性位于甲基叔丁基醚和水之间的惰性溶剂来调节溶剂系统的极性。一般加入正丁醇、甲醇、乙醇、乙腈作为极性调节剂,组成四元溶剂体系,三元的甲基叔丁基醚体系不是很常见。可以用于分离含羟基不是很多的苷类和极性较
离子液体强化溶剂萃取油砂沥青工艺优化及机理研究
油砂作为一种非常有潜力的石油替代能源,其矿藏储量十分可观。在石油储量急剧减小和加工难度增加带来油价上升等诸多问题的背景下,油砂加工技术的开发和改进已经受到国内外的广泛关注。 现有工业化应用的热碱水洗技术存在耗水量大、尾矿难处理、环境危害性大等问题;而传统的有机溶剂萃取法存在溶剂易燃易爆、残沙中残留的
离子液体[-Bmim]-PF6-溶剂浮选分离富集2光度法测定
离子液体[ Bmim] PF6 溶剂浮选分离富集2光度法测定 环境中痕量四环素类抗生素的研究 王 良1 ,2 , 马春宏1 ,2 , 李华明2 , 闫永胜3 2 (1. 吉林师范大学化学学院,吉林四平136000 ; 2. 江苏大学化学化工学院,江苏镇江212013)
加速溶剂萃取和离子液体微萃取在土壤样品处理中应用
加速溶剂萃取和离子液体微萃取法研究了土壤样品中农药和邻苯二甲酸酯的萃取,通过对加速溶剂萃取条件的优化和对离子液体微萃取方法改进以及条件优化,建立了一些对复杂土壤样品的更快速、高效、操作简便且环保的前处理方法。论文研究的主要萃取方法有微波辅助离子液体均匀萃取、加速溶剂萃取和超声辅助离子液体微萃取法。
离子液体[-Bmim]PF6溶剂浮选分离富集2光度法测定(二)
2. 2 浮选溶剂的选择 离子液体的密度大都在1. 1~1. 6 g•cm- 3 之间,粘度与传统的有机溶剂相比通常要高出1~3 个数量级[9210 ] ,不能直接用于溶剂浮选。Seddon等[11 ] 研究发现少量杂质的存在会导致离子液体的粘度明显降低,Wang 等[12 ]
离子液体[-Bmim]PF6溶剂浮选分离富集2光度法测定(一)
摘 要:建立了离子液体溶剂浮选四环素类( TCs) 抗生素的新方法。以12丁基232甲基咪唑六氟磷酸盐( [Bmim] PF6 ) 和乙酸乙酯( EA) 的混合溶剂(V / V = 1) 为浮选剂,以Al ( Ⅲ) 为捕集剂,在p H = 6. 7 条件下,分离富集环境水样中四环素(
离子液体的毒性
离子液体(ILs)是完全由离子组成的在室温或使用温度下呈液态的盐,一般由较大的有机阳离子和较小的无机阴离子组成。离子液体的物化性质以及应用方面已有较多报道,但有关离子液体的负面影响直到最近才引起人们的注意。有报道指出:离子液体因没有蒸气压,在使用过程中本身不会形成挥发性有机物而被称为“绿色产品”
液体闪烁计数的溶剂的相关介绍
从β源放射β射线到发射能被肖阴极接收的光妇的这一系列能量转移环节中,能量转移效率是很低的,只有少部分放射能量被利用来发射光子,其中放射源与溶剂之间,能量转移效率大约为5~10%。对溶剂的选择,主要视其对闪烁体的溶介度和将放射能转移给闪烁体的效率而定。如果以一定浓度的闪烁体在甲苯溶液中产生的脉冲高
锂电池研究:离子溶剂模型从单溶剂拓展至多溶剂体系
开发先进储能器件、高效利用可再生能源、构建可持续发展能源体系是实现“碳中和”目标的迫切需求。传统的锂离子电池技术由于能量密度等方面的限制,越来越难以满足未来社会发展的能源需求。发展基于金属锂负极的下一代锂电池技术成为了当前研究重点,但同时对电解液设计提出了更高的要求。深入理解电解液溶剂化结构和构
离子液体的性能介绍
离子液体:近年来,由于室温离子液体具有很高的氧化电位(约5.3),因此人们认为室温离子液体(例如1MLiTFSI / EMI-TFSI,EMIBF4,BMIBF4等)可替代锂离子电池电解质。 V)并且不易燃。蒸气压低,热稳定性更好,无毒,沸点高,锂盐溶解度高等优点。然而,离子液体的高粘度削弱了锂离子
离子液体的毒性研究
离子液体毒性的相关研究,国外处于起步阶段,国内尚未见相关报道。从已有研究报道看,研究工作主要集中在以下两个问题:一是ILs对生态系统中各类生物的毒性作用情况;二是ILs的各部分组成对ILs毒性的影响。ILs各组成部分对其毒性的影响主要包括如下方面: (1)阳离子核对ILs毒性的影响;(2)侧链取
红外制备液体样品的溶剂有什么要求
注意液相样品的谱与样品分子之间的相互作用(如极性分子之间的缔合)及溶剂与分子之间的相互作用有关,这些相互作用又与样品分子的极性、溶剂的极性、浓度、温度等有关。溶剂不能是水(有特殊要求的除外)溶剂红外吸收不能与样品间有重叠溶剂的挥发性要高些溶剂与样品不能发生化学反应....
离子选择性电极的电极性能
离子选择性电极的基本特性是衡量电极优劣的指标。 电极在对一种主要离子产生响应时,会受到其他离子,包括带有相同和相反电荷的离子的干扰。公式(1)反映了相同电荷离子对膜电势的影响,它用选择性系数Kij来表示,此值愈小,电极对i离子的选择性愈高, 一般要求Kij值在10-3以下。Kij不是一个严格的